精英家教网 > 高中数学 > 题目详情
下列命题为真命题的是(  )
A.函数y=sin2x-cos2x是奇函数
B.已知命题p:对任意实数x,都有
1
x2-1
<0,则非p可表示为:至少存在一个实数x0,使x0≤-1,或x0≥1
C.“
t1
1
x
dx
>0”是“t2+t-2>0”的必要不充分条件
D.存在实数m,使2与m-1的等比中项为m
A.因为y=sin2x-cos2x=-cos2x,所以为偶函数,所以A错误.
B.因为命题p是全称命题,即p为对任意实数x,都有x2-1<0,即-1<x<1.
所以根据全称命题的否定是特称命题得非p:至少存在一个实数x0,使x0≤-1,或x0≥1,所以B正确.
C.由
t1
1
x
dx
>0得lnt>0,解得t>1.而t2+t-2>0,解得t>1或t<-2.所以“
t1
1
x
dx
>0”是“t2+t-2>0”的充分不必要条件,所以C错误.
D.若存在实数m,使2与m-1的等比中项为m,则有m2=2(m-1),即m2-2m+2=0,因为△=4-4×2=-4<0,所以方程无解,所以D错误.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、关于直线m,n和平面α,β,则下列命题为真命题的是:(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

1、下列命题为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:m、n为直线,α为平面,若m∥n,n?α,则m∥α;命题q:若a>b,则ac>bc,则下列命题为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题为真命题的是(  )
A、?x∈R,x+1>xB、?x∈Z,x2=2C、?x∈R,x2>0D、?x∈Z,x2>x

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题为真命题的是(  )
A、a>b是a2>b2的充分条件B、|a|>|b|是a2>b2的充要条件C、x2=1是x=1的充分条件D、α=β是sinα=sinβ的必要不充分条件

查看答案和解析>>

同步练习册答案