【题目】已知函数
,
,使得对任意两个不等的正实数
,都有
恒成立.
(1)求
的解析式;
(2)若方程
有两个实根
,且
,求证:
.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+tx+1(其中实数t>0).
(1)已知实数x1,x2∈[﹣1,1],且x1<x2.若t=3,试比较x1f(x1)+x2f(x2)与x1f(x2)+x2f(x1)的大小关系,并证明你的结论;
(2)记g(x)
,若存在非负实数x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值为8,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆
截直线
所得的线段的长度为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
是椭圆
上的点,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四张卡片,分别写有“学、习、强、国”四个字,有放回地从中任取一张卡片,将三次抽取后“学”“习”两个字都取到记为事件
,用随机模拟的方法估计事件
发生的概率,利用电脑随机产生整数0,1,2,3四个随机数,分别代表“学、习、强、国”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 210 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件
发生的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面
是直角梯形,
,
,
,侧面
底面
,且
是以
为底的等腰三角形.
(Ⅰ)证明:![]()
(Ⅱ)若四棱锥
的体积等于
.问:是否存在过点
的平面
分别交
,
于点
,使得平面
平面
?若存在,求出
的面积;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点
,焦点在
轴上,左右焦点分别为
,
,离心率为
,右焦点到右顶点的距离为1.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
交于不同的两点
,
,则
的面积是否存在最大值?若存在,求出这个最大值及直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com