精英家教网 > 高中数学 > 题目详情
(2005•朝阳区一模)设P(x,y)是图中四边形内的点或四边形边界上的点(即x、y满足的约束条件),则z=2x+y的最大值是
2
2
分析:根据约束条件画出的可行域,画出直线z=2x+y,利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的点B(1,0)时,从而得到z=2x+y的最大值即可.
解答:解:由于z=2x+y,将z最大值转化为y轴上的截距,
当直线z=2x+y经过点B(1,0)时,z最大,
最大值为:2.
故答案为:2.
点评:本题主要考查了简单线性规划,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•朝阳区一模)圆C:
x=1+cosθ
y=sinθ
为参数)的普通方程为
(x-1)2+y2=1
(x-1)2+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)不等式|3x-2|>4的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)在下列给定的区间中,使函数y=sin(x+
π
4
)
单调递增的区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知直线a、b和平面M,则a∥b的一个必要不充分条件是(  )

查看答案和解析>>

同步练习册答案