精英家教网 > 高中数学 > 题目详情
设函数若关于x的方程f(x)=a有两个不相等的实数根,则实数a的取值范围是   
【答案】分析:原方程的解的情况可以借助于函数y=a与函数y=的图象考查来进行.方程有两个不相等的实数根即两个图象有两点交点,根据图形可得实数a的取值范围.
解答:解:原方程的解可以视为函数y=a与函数y=的图象的交点的横坐标.
而函数 的图象如图所示,当0<a≤1时平行直线系y=a与 的图象有两个不同的交点.
所以,当0<a≤1时,原方程有两个不相等的实数根.
故答案为:(0,1]
点评:此题考查根的存在性及根的个数判断,灵活运用数形结合的数学思想解决实际问题,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源:广西桂林十八中2012届高三第一次月考数学理科试题 题型:013

设函数若关于x的方程f2(x)=af(x)恰有四个不同的实数解,则实数a的取值范围为

[  ]
A.

(-∞,0)

B.

(0,1)

C.

[0,1]

D.

(1,+∞)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西桂林十八中高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

设函数若关于x的方程f2(x)=af(x)恰有四个不同的实数解,则实数a的取值范围为( )
A.(-∞,0)
B.(0,1)
C.[0,1]
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源:2011年广西柳州市高考数学一模试卷(文科)(解析版) 题型:选择题

设函数若关于x的方程f2(x)=af(x)恰有四个不同的实数解,则实数a的取值范围为( )
A.(-∞,0)
B.(0,1)
C.[0,1]
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数数学公式若关于x的方程f(x)=a有两个不相等的实数根,则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案