精英家教网 > 高中数学 > 题目详情
6.已知α为锐角,满足$sin(\frac{π}{2}+2α)=cos(\frac{π}{4}-α)$,则sin2α=$\frac{1}{2}$.

分析 根据二倍角公式以及和差角公式对已知条件两边整理得cosα-sinα=$\frac{\sqrt{2}}{2}$,再两边平方即可得到结论.

解答 解:∵$sin(\frac{π}{2}+2α)=cos2α$=cos2α-sin2α=(cosα-sinα)(cosα+sinα),①
cos($\frac{π}{4}$-α)=$\frac{\sqrt{2}}{2}$(cosα+sinα),②
∵锐角α满足cos2α=cos($\frac{π}{4}$-α),③
∴由①②③得,cosα-sinα=$\frac{\sqrt{2}}{2}$.
两边平方整理得:1-sin2α=$\frac{1}{2}$,则sin2α=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题主要考查三角函数的恒等变换及化简求值.解决这类题目的关键在于对公式的熟练掌握及其应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)是定义在(0,+∞)上的非负可导函数,且满足xf'(x)-f(x)≤0,对任意正数a,b,若a<b,则必有(  )
A.bf(a)<af(b)B.bf(a)>af(b)C.bf(a)≤af(b)D.af(b)≤bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算 C992+C993=161700.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线x2-y2=1,则它的右焦点到它的渐近线的距离是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{2}$sin($\frac{π}{4}$-3x)+2.
(1)求f(x)的单调递减区间;
(2)若x∈[$\frac{5π}{2}$,$\frac{17π}{6}$],求f(x)的值域;
(3)写出f(x)的图象经过怎样的变换可以得到y=sinx的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex+mx2
(1)若m=1,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)若存在实数m,n,使得f(x)-n≥0(m,n∈R)恒成立,求m-n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a>0,b>0,且a+b=1.
(I)若ab≤m恒成立,求m的取值范围;
(II)若$\frac{4}{a}+\frac{1}{b}≥|{2x-1}|-|{x+2}|$恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集为U={-4,-2,-1,0,2,4,5,6,7},集合A={-2,0,4,6},B={-1,2,4,6,7},则A∩(∁UB)=(  )
A.{-2,0}B.{-4,-2,0}C.{4,6}D.{-4,-2,0,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a=$\int_{-1}^1{\sqrt{1-{x^2}}dx}$,则${[{(a+2-\frac{π}{2})x-\frac{1}{x}}]^6}$展开式中的常数项为-160.

查看答案和解析>>

同步练习册答案