精英家教网 > 高中数学 > 题目详情

设函数fn(θ)=sinnθ+(-1)ncosnθ,0≤θ≤,其中n为正整数。
(1)判断函数f1(θ)、f3(θ)的单调性,并就f1(θ)的情形证明你的结论;
(2)证明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
(3)对于任意给定的正奇数n,求函数fn(θ)的最大值和最小值。

解:(1)上均为单调递增的函数,
对于函数,设



∴函数上单调递增;
(2)∵原式左边=   
  

又原式右边=

(3)当n=1时,函数上单调递增,       
的最大值为,最小值为
当n=3时,函数上为单调递增, 
的最大值为,最小值为
下面讨论正奇数n≥5的情形:对任意

以及,       

从而
上为单调递增,       
的最大值为,最小值为
综上所述,当n为奇数时,函数的最大值为0,最小值为-1。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,F为椭圆的右焦点,M,N两点在椭圆C上,且
MF
FN
(λ>0)
,定点A(-4,0).
(1)若λ=1时,有
AM
AN
=
106
3
,求椭圆C的方程;
(2)在条件(1)所确定的椭圆C下,当动直线MN斜率为k,且设s=1+3k2时,试求
AM
AN
tan∠MAN
关于S的函数表达式f(s)的最大值,以及此时M,N两点所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、BA的方向运动,当第二次MF=MN时M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,设动点M、N的速度都是1个单位/秒,M、N运动的时间为t秒.试解答下列问题:
(1)求F、M、N三点共线时t的值;
(2)设△FMN的面积为S,写出S与t的函数关系式.并求出t为何值时S的值最大.
(3)试问t为何值时,△FMN为直角三角形?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆94中高三(上)第五次月考数学试卷(解析版) 题型:解答题

如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、BA的方向运动,当第二次MF=MN时M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,设动点M、N的速度都是1个单位/秒,M、N运动的时间为t秒.试解答下列问题:
(1)求F、M、N三点共线时t的值;
(2)设△FMN的面积为S,写出S与t的函数关系式.并求出t为何值时S的值最大.
(3)试问t为何值时,△FMN为直角三角形?

查看答案和解析>>

同步练习册答案