精英家教网 > 高中数学 > 题目详情

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

【答案】(1)y2=8x.(2)λ=0,或λ=2.

【解析】试题分析:第一问求抛物线的焦点弦长问题可直接利用焦半径公式,先写出直线的方程,再与抛物线的方程联立方程组,设而不求,利用根与系数关系得出,然后利用焦半径公式得出焦点弦长公式,求出弦长,第二问根据联立方程组解出的A、B两点坐标,和向量的坐标关系表示出点C的坐标,由于点C在抛物线上满足抛物线方程,求出参数值.

试题解析:

(1)直线AB的方程是y=2(x-2),与y2=8x联立,消去yx2-5x4=0,

由根与系数的关系得x1x25.由抛物线定义得|AB|=x1x2p=9,

(2)由x2-5x+4=0,得x1=1,x2=4,从而A(1,-2),B(4,4).

=(x3y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),

y=8x3,即[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,

解得λ=0或λ=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若bm为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.已知

(Ⅰ)求

(Ⅱ)将函数的图象上各点的横坐标伸长为原来的倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC为等边三角形,AE=1,BD=2,CD与平面ABCDE所成角的正弦值为

(1)若F是线段CD的中点,证明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).

(1)若函数f(x)的最小值是f(﹣1)=0,且c=1,求f (2)的值;

(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为某几何体形状的纸盒的三视图,在此纸盒内放一个小正四面体,若小正四面体在纸盒内可以任意转动,则小正四面体的棱长的最大值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点为平面上动点,过点作直线的垂线,垂足为,且.

(1)求动点的轨迹方程;

(2)过点的直线与轨迹交于两点,在处分别作轨迹的切线交于点,设直线的斜率分别为求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC的中点,连接AD并延长交⊙O于点E,若PA=2 ,∠APB=30°.

(1)求∠AEC的大小;
(2)求AE的长.

查看答案和解析>>

同步练习册答案