精英家教网 > 高中数学 > 题目详情
若函数f(x)=2sinωx(其中0<ω<1),在闭区间[0,
π
3
]上的最大值是
2
,求ω的值.
分析:由题意通过函数的最大值,函数的性质,求出ω的值即可.
解答:解:函数f(x)=2sinωx(其中0<ω<1),在闭区间[0,
π
3
]上的最大值是
2
,所以sinωx的最大值为
2
2
,所以x=
π
3
时函数取得
2
2
,所以ω
π
3
=
π
4
,ω=
3
4

故答案为:
3
4
点评:本题是基础题,考查三角函数的基本性质的应用,函数的单调性的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、定义在R上的函数y=f(x)是增函数,且为奇函数,若实数s,t满足不等式f(s2-2s)≥-f(2t-t2),则当1≤s≤4时,3t+s的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2).则当1≤s≤4时,
t
s
的取值范围是(  )
A、[-
1
2
,1)
B、[-
1
4
,1)
C、[-
1
2
,1]
D、[-
1
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

12、定义在R上的函数y=f(x)是增函数,且函数y=f(x-3)的图象关于(3,0)成中心对称,若s,t满足不等式f(s2-2s)≥-f(2t-t2),则当1≤s≤4时,3t+s的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当1≤s≤4时,
t
s
的取值范围是
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)是减函数,且函数y=f(x-1)的图象关于(1,0)成中心对称,若实数s满足不等式f(s2-2s)+f(2-s)≤0,则s的取值范围是
(-∞,1]∪[2,+∞)
(-∞,1]∪[2,+∞)

查看答案和解析>>

同步练习册答案