精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)已知函数f(x)经过(0,8),(-1,1),(1,16)三点,求f(x)的解析式;
(2)求函数f(x)的定义域和值域;
(3)确定函数的单调区间.

解:(1)∵过(0,8),(-1,1),(1,16)三点,
,即:
解方程组得:

(2)∵对于任意x∈R都有意义,
的定义域为R.
设u=-x2+2x+3,则f(x)=2u
当x∈R时,由二次函数性质知u∈(-∞,4],
所以f(x)=2u,u∈(-∞,4],
根据f(x)=2u为指函数性质可知:f(x)∈(-∞,16].
(3)由(2)知:设u=-x2+2x+3,则f(x)=2u,u∈(-∞,4]
①当x∈(-∞,1]时,随x增大,u增大,
从指数函数性质知:随u增大,f(x)=2u也增大,
所以在(-∞,1]上为增函数.
②当x∈[1,+∞)时,随x增大,u减小,
从指数函数性质知:随u减小,f(x)=2u也减小,
所以在(-∞,1]上为减函数.
分析:(1)把(0,8),(-1,1),(1,16)三点分别代入,能够求出f(x)的解析式.
(2)由对于任意x∈R都有意义,知的定义域为R.设u=-x2+2x+3,则f(x)=2u,利用二次函数的性质求出u∈(-∞,4],再由指函数性质能求出f(x)的值域.
(3)设u=-x2+2x+3,则f(x)=2u,u∈(-∞,4],利用复合函数的单调性的性质,能求出f(x)的单调区间.
点评:本题考查函数的解析式、定义域、值域和单调区间的求法,解题时要认真审题,注意待定系数法、换元法、二次函数的性质和指数函数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函致f (x)=x3+bx2+cx+d.
(I)当b=0时,证明:曲线y=f(x)与其在点(0,f(0))处的切线只有一个公共点;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线为12x+y-13=0,记函数y=f(x)的两个极值点为x1,x2,当x1+x2=2时,求f(x1)+f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函致f (x)=x3+bx2+cx+d.
(I)当b=0时,证明:曲线y=f(x)与其在点(0,f(0))处的切线只有一个公共点;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线为12x+y-13=0,且它们只有一个公共点,求函数y=f(x)的所有极值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

问题1:已知函数f(x)=
x
1+x
,则f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
f(
1
10
)+f(10)
可一般表示为f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州模拟)已知函数值不为1的函数f(x)定义在实数集上,且对任意x都有f(x+2)[1-f(x)]=1+f(x),又f(1)=2+
3
,则f(2011)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)是可导函数,且f′(a)=1,则
lim
x→a
f(x)-f(a)
2(x-a)
等于
 

查看答案和解析>>

同步练习册答案