| 1 |
| 2 |
| an+12 |
| an+an+1 |
| an |
| an+1 |
| a1a1 |
| a2 |
| a1a2 |
| a3 |
| a2a1 |
| a3 |
| a1an |
| an+1 |
| a2an-1 |
| an+1 |
| ana1 |
| an+1 |
| 1 |
| 2 |
| an+12 |
| an+an+1 |
| an+2 |
| an+1 |
| an+1 |
| an+an+1 |
| an+1 |
| an+2 |
| an |
| an+1 |
| an |
| an+1 |
| an |
| an+1 |
| a1 |
| a2 |
| a1 |
| an |
| a1 |
| a2 |
| a2 |
| a3 |
| an-1 |
| an |
| 1 |
| n! |
| akan-k+1 |
| an+1 |
| (n+1)! |
| k!(n-k+1)! |
| a1an |
| an+1 |
| a2an-1 |
| an+1 |
| ana1 |
| an+1 |
| 1 |
| 2 |
| an+12 |
| an+an+1 |
| an+2 |
| an+1 |
| an+1 |
| an+an+1 |
| an+1 |
| an+2 |
| an |
| an+1 |
| an |
| an+1 |
| an |
| an+1 |
| a1 |
| a2 |
| a1 |
| an |
| a1 |
| a2 |
| a2 |
| a3 |
| an-1 |
| an |
| 1 |
| n! |
| akan-k+1 |
| an+1 |
| (n+1)! |
| k!(n-k+1)! |
| a1an |
| an+1 |
| a2an-1 |
| an+1 |
| ana1 |
| an+1 |
| 22(2n-1) |
| 2-1 |
科目:高中数学 来源:山东省枣庄市2010届高三年级调研考试数学文科试题 题型:044
已知数列{an}满a1=1,任意n∈N*,有a1+3a2+5a3+…+(2n-1)an=pn(p为常数)
(1)求p的值及数列{an}的通项公式;
(2)令bn=anan+1(n∈N*),求数列{bn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com