精英家教网 > 高中数学 > 题目详情
sin(180°+2α)
1+cos2α
cos2α
cos(90°+α)
等于(  )
A、-sinαB、-cosα
C、sinαD、cosα
分析:利用诱导公式和二倍角公式对原式化简整理求得答案.
解答:解:原式=
(-sin2α)•cos2α
(1+cos2α)•(-sinα)

=
2sinα•cosα•cos2α
2cos2α•sinα

=cosα.
故选D
点评:本题主要考查了运用诱导公式和二倍角公式的化简求值.考查了基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知tanα=2,求
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
的值
(2)已知cos(75°+α)=
1
3
,其中-180°<α<-90°,求sin(105°-α)+cos(375°-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
-sin(180°+α)+sin(-α)-tan(360°+α)tan(α+180°)+cos(-α)+cos(180°-α)

(2)sin120°•cos330°+sin(-690°)cos(-660°)+tan675°+cot765°.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
-sin(180°+α)+sin(-α)-tan(360°+α)
tan(α+180°)+cos(-α)+cos(180°-α)

(2)
sin(α+nπ)+sin(α-nπ)
sin(α+nπ)cos(α-nπ)
(n∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

三角函数内容丰富,公式很多.如果你仔细观察、敢于设想、科学求证,那么你也能发现其中的一些奥秘.请你完成以下问题:
(1)计算:(直接写答案)
cos2°
sin47°
+
cos88°
sin133°
=
2
2
cos5°
sin50°
+
cos85°
sin130°
=
2
2

(2)根据(1)的计算结果,请你猜出一个一般性的结论:
cos(θ-45°)
sinθ
+
cos(135°-θ)
sin(180°-θ)
=
2
cos(θ-45°)
sinθ
+
cos(135°-θ)
sin(180°-θ)
=
2
.(用数学式子加以表达,并证明你的结论,写出推理过程.)

查看答案和解析>>

同步练习册答案