精英家教网 > 高中数学 > 题目详情
如图,已知在坐标平面内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为
(Ⅰ)求以M、N为焦点且过点P的椭圆方程;
(Ⅱ)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分、λ2,求证:λ12=0.

【答案】分析:(Ⅰ)设M(-c,0),N(c,0)(c>0),P(x,y),则,2cx=2c,故x=1.,由.由此入手能求出椭圆方程.
(Ⅱ)当l的斜率不存在时,l与x=-4无交点,不合题意.当l的斜率存在时,设l方程为y=k(x+1),代入椭圆方程,化简得:(4k2+1)x2+8k2x+4k2-4=0.设点C(x1,y1)、D(x2,y2),再由根的判别式和韦达定理进行求解.
解答:解:(Ⅰ)设M(-c,0),N(c,0)(c>0),P(x,y),
,2cx=2c,故x=1.①
又∵.②

由已知
.③
将①②代入③,

设椭圆方程为
在椭圆上,

∴椭圆方程为:
(Ⅱ)①当l的斜率不存在时,l与x=-4无交点,
不合题意.
②当l的斜率存在时,设l方程为y=k(x+1),
代入椭圆方程
化简得:(4k2+1)x2+8k2x+4k2-4=0.设点C(x1,y1)、D(x2,y2),
则:



=
∴λ12=0.
点评:本题考查椭圆方程的求法和求证λ12=0.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用椭圆的性质,恰当地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知在坐标平面内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为
3
2
,点A坐标为(1+
3
3
2
),
MP
=m•
OA
(m为常数)
MN
OP
=|
MN
|

(Ⅰ)求以M、N为焦点且过点P的椭圆方程;
(Ⅱ)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分
CD
的比分别为λ1
、λ2,求证:λ12=0.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山西省介休市高三下学期模拟考试理科数学 题型:解答题

(本小题满分12分)

如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+), =m· (m为常数),

 

(1)求以M、N为焦点且过点P的椭圆方程;

(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+),=m· (m为常数),.

(1)求以M、N为焦点且过点P的椭圆方程;

(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求证:λ12=0.

查看答案和解析>>

科目:高中数学 来源:2011届山西省介休市十中高三下学期模拟考试理科数学 题型:解答题

(本小题满分12分)
如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+), =m· (m为常数),

(1)求以M、N为焦点且过点P的椭圆方程;
(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。

查看答案和解析>>

同步练习册答案