精英家教网 > 高中数学 > 题目详情
1.在△ABC中,a=2,b=3,$cosC=\frac{1}{3}$,则其外接圆的半径为(  )
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{8}$D.9$\sqrt{2}$

分析 利用余弦定理列出关系式,将a,b及cosC的值求出c的值,再利用同角三角函数间的基本关系求出sinC的值,根据正弦定理即可求出外接圆半径.

解答 解:∵a=2,b=3,cosC=$\frac{1}{3}$,
∴c2=a2+b2-2abcosC=4+9-4=9,即c=3,
∵cosC=$\frac{1}{3}$,∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{2}}{3}$,
则2R=$\frac{c}{sinC}$=$\frac{3}{\frac{2\sqrt{2}}{3}}$,即R=$\frac{9\sqrt{2}}{8}$.
故选:C.

点评 此题考查了余弦定理,正弦定理的应用,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图1,在梯形ABCD中,AD∥BC,四边形ABEF是矩形,将矩形ABEF沿AB折起到四边形ABE1F1的位置,使得平面ABE1F1⊥平面ABCD,M为AF1上一点,如图2.

(I)求证:BE1⊥DC;
(II)求证:DM∥平面BCE1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面α,β及直线a满足α⊥β,α∩β=AB,a∥α,a⊥AB,则(  )
A.a?βB.a⊥β
C.a∥βD.a与β相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R的奇函数f(x),当x<0时,f(x)=-x2+x,则 f(2)=(  )
A.6B.-6C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ab<0,bc<0,则直线ax+by+c=0通过(  ) 象限.
A.第一、二、三B.第一、二、四C.第一、三、四D.第二、三、四

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)讨论f(x)的奇偶性; 
(2)若x≥a,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图(1),已知长方形ABCD中,AB=2,AD=1,M为CD的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM,如图(2)E为BD的中点.
(1)求证:CE∥平面ADM;
(2)求四面体EAMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.球面面积等于它的大圆面积的(  )倍.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.-$\frac{5}{3}$B.$\frac{5}{4}$C.$-\frac{5}{6}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案