| A. | 7 | B. | 9 | C. | 10 | D. | 11 |
分析 模拟程序的运行,由程序框图得出该算法的功能以及S>1时,终止循环;再根据S的值求出终止循环时的i值即可.
解答 解:模拟执行程序,可得
i=1,S=0
S=lg3,
不满足条件1<S,执行循环体,i=3,S=lg3+lg$\frac{5}{3}$=lg5,
不满足条件1<S,执行循环体,i=5,S=lg5+lg$\frac{7}{5}$=lg7,
不满足条件1<S,执行循环体,i=7,S=lg5+lg$\frac{9}{7}$=lg9,
不满足条件1<S,执行循环体,i=9,S=lg9+lg$\frac{11}{9}$=lg11,
满足条件1<S,跳出循环,输出i的值为9.
故选:B.
点评 本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,a) | B. | (0,b) | C. | (0,$\sqrt{{a}^{2}+{b}^{2}}$) | D. | (0,$\sqrt{ab}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 图象关于$x=\frac{π}{3}$对称 | |
| B. | 图象关于$(\frac{2π}{3},0)$对称 | |
| C. | 在$[\frac{2π}{3},\frac{8π}{3}]$上单调递减 | |
| D. | 单调递增区间是$[2kπ-\frac{4π}{3},2kπ+\frac{2π}{3}](k∈Z)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com