精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)最小正周期为
π
2

(Ⅰ)求ω的值及函数f(x)的解析式;
(Ⅱ)若△ABC的三条边a,b,c满足a2=bc,a边所对的角为A.求角A的取值范围及函数f(A)的值域.
考点:三角函数中的恒等变换应用,余弦定理
专题:三角函数的求值,三角函数的图像与性质,解三角形
分析:(I)化简解析式可得f(x)=sin(2ωx-
π
6
)-
1
2
.由
=
π
2
,可得ω的值,从而可求函数f(x)的解析式;
(II)由余弦定理可得cosA=
b2+c2-a2
2bc
1
2
,又0<A≤
π
3
,可得-
π
6
<4A-
π
6
6
,从而可求函数f(A)的值域.
解答: 解:(I)f(x)=
3
sinωx•cosωx-cos2ωx=
3
2
sin2ωx-
1
2
cos2ωx-
1
2
=sin(2ωx-
π
6
)-
1
2

=
π
2
,得ω=2.…(3分)
函数f(x)=sin(4x-
π
6
)-
1
2
.…(5分)
(II)因为cosA=
b2+c2-a2
2bc
=
b2+c2-bc
2bc
2bc-bc
2bc
=
1
2
. …(8分)
而A为三角形内角,所以0<A≤
π
3
.….(10分)
所以-
π
6
<4A-
π
6
6
,-
1
2
≤sin(4x-
π
6
)≤1,
即-1≤f(A)
1
2
.…(12分)
点评:本题主要考察了三角函数中的恒等变换应用,三角函数的图象与性质,余弦定理的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

黄种人群中各种血型的人所占的比例如下表所示:
血型ABABO
该血型的人所占的比例(%)28%29%8%35%
若按如下原则输血,同种血型的人可以输血,O型血可以输给任何一种血型的人,任何血型的人血都可以输给AB型血的人,其他不同血型的人不能互相输血,问:
(1)任找一个人,其血可以输给B型血病人的概率是多少?
(2)任找一个人,其血可以输给A型血病人或B型血病人的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某人根据自己爱好,希望从{W,X,Y,Z}中选2个不同字母,从{0,2,6,8}中选3个不同数字拟编车牌号,要求前三位是数字,后两位是字母,且数字2不能排在首位,字母Z和数字2不能相邻,那么满足要求的车牌号有(  )
A、198个B、180个
C、216个D、234个

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对角边分别为a,b,c,B=
π
3
,cosA=
4
5
,b=
3

(1)求sinC的值
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(sinx+cosx)sinx,若f(x1)≤f(x)≤f(x2),对?x∈R成立,则|x1-x2|最小值为(  )
A、
π
8
B、
π
4
C、
π
2
D、π

查看答案和解析>>

科目:高中数学 来源: 题型:

设P、Q是两个非空集合,定义集合间的一种运算“⊙“:P⊙Q={x|x∈P∪Q,且x∉P∩Q}如果P={x|-2≤x≤2},Q={x|x>1},则P⊙Q=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),若对给定的△ABC,它的三边的长a,b,c均在函数f(x)的定义域内,且f(a),f(b),f(c)也为某三角形的三边的长,则称f(x)是“保三角形函数”,给出下列命题:
①函数f(x)=x2+1是“保三角形函数”;
②函数f(x)=
x
(x>0)是“保三角形函数”;
③若函数f(x)=kx是“保三角形函数”,则实数k的取值范围是(0,+∞);
④若函数f(x)是定义在R上的周期函数,值域为(0,+∞),则f(x)是“保三角形函数”.
其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数f(1)=0,当x>0时,有
xf′(x)-f(x)
x2
>0成立,则不等式f(x)>0的解集是(  )
A、(1,+∞)
B、(-1,0)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中,AB∥CD,∠B=
π
2
,DC=2AB=2BC=2,以对角线AC为旋转轴旋转一周得到的几何体的表面积为(  )
A、2(1+
2
)π
B、2
2
π
C、
2
2
3
π
D、(3+2
2
)π

查看答案和解析>>

同步练习册答案