精英家教网 > 高中数学 > 题目详情

在区间[11]上的最大值是

[  ]

A1

B0

C2

D4

答案:C
解析:

点金:,令可得x=02(2舍去),当-1x0时,,当0x1时,,所以当x=0时,f(x)取得最大值为2.故选C


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若偶函数f(x)在区间(-∞,-1]上是增函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=f(x)满足:①f(0)=1;②f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)求f(x)在区间[-1,1]上的最大值和最小值;
(3)设g(x)=f(x-a),求g(x)在区间[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在区间[-1,1]上是增函数,且f(-1)=-1.当x∈[-1,1]时,函数f(x)≤t2-2at+1,对一切a∈[-1,1]恒成立,则实数t的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省益阳市桃江四中高一(下)期中数学试卷(B卷)(解析版) 题型:解答题

二次函数y=f(x)满足:①f(0)=1;②f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)求f(x)在区间[-1,1]上的最大值和最小值;
(3)设g(x)=f(x-a),求g(x)在区间[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省镇江市高一(上)期中数学试卷(解析版) 题型:解答题

二次函数y=f(x)满足:①f(0)=1;②f(x+1)-f(x)=2x.
(1)求f(x)的解析式;
(2)求f(x)在区间[-1,1]上的最大值和最小值;
(3)设g(x)=f(x-a),求g(x)在区间[-1,1]上的最大值.

查看答案和解析>>

同步练习册答案