精英家教网 > 高中数学 > 题目详情
已知向量=(cosx,2),=(sinx,-3).
(1)当时,求3cos2x-sin2x的值;
(2)求函数f(x)=(-)•在x∈[-,0]上的值域.
【答案】分析:(1)直接根据向量共线对应的结论得到tanx=-,再结合齐次式的应用即可求出结论;
(2)先根据二倍角公式以及辅助角公式对所求函数进行整理,再结合余弦函数的定义域和值域即可求出结论.
解答:解:(1)∵时,
∴-3cosx=2sinx,
∴tanx=-
3cos2x-sin2x===
(2)f(x)=(-)•=cos2x-sinxcosx+10
=-sin2x+10=cos+
∵x∈
∴-≤2x+
∴-cos
∴10≤cos+
即f(x)的值域为
点评:本题主要考查了平面向量数量积的应用,和两角和公式,二倍角公式的运用.三角函数的基本公式较多,注意多积累.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,sinx),
b
=(-cosx,cosx),
c
=(-1,0).
(Ⅰ)若x=
π
6
,求向量
a
c
的夹角;
(Ⅱ)当x∈[
π
2
8
]
时,求函数f(x)=2
a
b
+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2sinx-cosx,sinx),
n
=(cosx-sinx,0)
,且函数f(x)=(
m
+2
n
)
m.

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数f(x)向左平移
π
4
个单位得到函数g(x),求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的单调增区间及在[-
π
6
π
4
]
内的值域;
(II)已知A为△ABC的内角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n

(1)求f(x)的单调区间;
(2)当x∈[0, 
π
2
]
时,函数g(x)=a[f(x)-
1
2
]+b
的最大值为3,最小值为0,试求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx-cosx,1)
n
=(cosx,
1
2
)
,若f(x)=
m
n

(Ⅰ) 求函数f(x)的最小正周期;
(Ⅱ) 已知△ABC的三内角A、B、C的对边分别为a、b、c,且a=3,f(
A
2
+
π
12
)=
3
2
(A为锐角),2sinC=sinB,求A、c、b的值.

查看答案和解析>>

同步练习册答案