已知等比数列的首项为
,公比为
(
为正整数),且满足
是
与
的等差中项;数列
满足
(
).
(1)求数列的通项公式;
(2)试确定的值,使得数列
为等差数列;
(3)当为等差数列时,对任意正整数
,在
与
之间插入2共
个,得到一个新数列
.设
是数列
的前
项和,试求满足
的所有正整数
的值。
【解析】(1)因为,所以
,解得
(舍),则
………………3分
又,所以
…………4分
(2)由,得
,
所以,
则由,得
而当时,
,由
(常数)知此时数列
为等差数列…8分
(3)因为,易知
不合题意,
适合题意………………9分
当时,若后添入的数2 = cm + 1,则一定不适合题意,从而cm + 1必是数列
中的某一项
,则
即
.
也就是,
易证k=1,2,3,4不是该方程的解,而当n≥5时,成立,证明如下:
1°当n = 5时,,左边>右边成立;
2°假设n = k时,成立,
当n = k + 1时,
≥(k+1)2+(k+1)–1+5k–k–3=(k+1)2+(k+1)–1+k+3(k–1)
>(k+1)2+(k+1)–1
这就是说,当n=k+1时,结论成立.
由1°,2°可知,时恒成立,故
无正整数解.
综上可知,满足题意的正整数仅有m=2.…………13分
科目:高中数学 来源: 题型:
已知等比数列的首项为8,
是其前n项和,某同学经计算得
,
,
,后来该同学发现其中一个数算错了,则算错的那个数是__________,该数列的公比是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知等比数列的首项为8,
是其前n项的和,某同学经计算得S2=20,S3=36,S4=65,后来该同学发现了其中一个数算错了,则该数为
A. S1 B. S2 C. S3 D. S4
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏南京市、盐城市高三第一次模拟考试理数学试卷(解析版) 题型:填空题
已知等比数列的首项为
,公比为
,其前
项和为
,若
对
恒成立,则
的最小值为
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com