精英家教网 > 高中数学 > 题目详情
函数f(x)=
mx2+4mx+m+3
的定义域为R,则实数m的取值范围是(  )
分析:函数的定义域是一切实数,即mx2-6mx+m+8≥0对任意x∈R恒成立,结合二次函数的图象,只要考虑m和△即可.
解答:解:函数y=
mx2+4mx+m+3
的定义域是一切实数,即mx2+4mx+m+3≥0对任意x∈R恒成立
当m=0时,有3>0,显然成立;
当m≠0时,有
m>0
△≤0

m>0
△=(4m)2-4m(m+3)≤0

解之得 0<m≤1.
综上所述得 0≤m≤1.
故选B.
点评:本题主要考查了二次型不等式恒成立问题,解题的关键是不要忘掉对m=0的讨论,同时考查了转化的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知函数f(x)=mx2+(n+2)x-1是定义在[m,m2-6]上的偶函数,求:①m,n的值   ②函数f(x)的值域 ③求函数f(x-1)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx2-mx-1,对一切实数x,f(x)<0恒成立,则m的范围为(  )
A、(-4,0)B、(-4,0]C、(-∞,-4)∪(0,+∞)D、(-∞,-4)∪[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
mx2+mx2+1
,x∈R,则实数m的取值范围
[0,4]
[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx2-mx-1
(1)若对一切实数x,f(x)<0恒成立,求m的取值范围.
(2)若对一切实数m∈[-2,2],f(x)<-m+5恒成立,求x的取值范围.

查看答案和解析>>

同步练习册答案