精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点 A,B,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
( O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.
考点:椭圆的简单性质
专题:圆锥曲线中的最值与范围问题
分析:(1)由离心率公式和直线与圆相切的条件,列出方程组求出a、b的值,代入椭圆方程即可;
(2)设A、B、P的坐标,将直线方程代入椭圆方程化简后,利用韦达定理及向量知识,即可求t的范围.
解答: 解:(1)由题意知e=
c
a
=
2
2
,…1分
所以e2=
c2
a2
=
a2-b2
a2
=
1
2
.即a2=2b2.…2分
又∵椭圆的短半轴长为半径的圆与直线x-y+
2
=0相切,
b=
2
1+1
=1
,…3分,
则a2=2.…4分
故椭圆C的方程为
x2
2
+y2=1
. …6分
(2)由题意知直线AB的斜率存在.
设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
y=k(x-2)
x2
2
+y2=1
得(1+2k2)x2-8k2x+8k2-2=0.
△=64k4-4(2k2+1)(8k2-2)>0,解得k2
1
2
…7分
x1+x2=
8k2
1+2k2
x1x2=
8k2-2
1+2k2

∵足
OA
+
OB
=t
OP
,∴(x1+x2,y1+y2)=t(x,y).
当t=0时,不满足|
PA
-
PB
|<
2
5
3

当t≠0时,解得x=
x1+x2
t
=
8k2
t(1+2k2)

y=
y1+y2
t
=
k(x1+x2)-4k
t
=
-4k2
t(1+2k2)

∵点P在椭圆
x2
2
+y2=1
上,∴
(8k2)2
t2(1+2k2)2
+2
(-4k)2
t2(1+2k2)2
=2

化简得,16k2=t2(1+2k2)…8分
|
PA
-
PB
|
2
5
3
,∴
1+k2
|x1-x2|<
2
5
3

化简得(1+k2)[(x1+x2)2-4x1x2]<
20
9

(1+k2)[
64k4
(1+2k2)2
-4×
8k2-2
1+2k2
]<
20
9

∴(4k2-1)(14k2+13)>0,解得k2
1
4
,即
1
4
k2
1
2
,…10分
∵16k2=t2(1+2k2),∴t2=
16k2
1+2k2
=8-
8
1+2k2
,…11分
-2<t<-
2
6
3
2
6
3
<t<2

∴实数取值范围为(-2,-
2
6
3
)∪(
2
6
3
,2)
…12分
点评:本题考查椭圆的方程、性质,直线与椭圆的位置关系,韦达定理的运用,以及平面向量的知识,考查化简、计算能力和分类讨论思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中既是偶函数,又在(0,+∞)上是单调递增函数的是(  )
A、y=-x2+1
B、y=|x|+1
C、y=log2x+1
D、y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,侧棱垂直于底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AA1=4,∠E=60°,点B为DE中点,AB⊥BC.
(1)求AC的长;
(2)求二面角A-A1C-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3},B={2,3,4,5},则A∩B=(  )
A、{2,3}
B、{1,4,5}
C、{2,3,4}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为公比q>1的等比数列,若a2012和a2013是方程4x2-8x+3=0的两个根,则a2013+2a2014+a2015=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若
AD
BE
=1,则AB的长为(  )
A、
6
B、4
C、5
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,点O1为上底面A1C1的中心,若
AO1
=
AA1
+x
AB
+y
AD
,则x,y的值是(  )
A、x=
1
2
,y=1
B、x=1,y=
1
2
C、x=
1
2
y=
1
2
D、x=1,y=1

查看答案和解析>>

科目:高中数学 来源: 题型:

想要得到函数y=cos2x的图象,只需将函数y=cos(
π
3
-2x)(  )而得到.
A、向右平移
π
6
个单位
B、向右平移
π
3
个单位
C、向左平移
π
6
个单位
D、向左平
π
3
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,若满足
y≥|x|
y≤ax+1
的点P表示的区域为三角形,则实数a的范围是.
A、(-1,1)
B、(-∞,-1)
C、(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步练习册答案