精英家教网 > 高中数学 > 题目详情

(理)一个人随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中去,每个盒子放一个球,当球的编号与盒子的编号相同时叫做放对了,否则叫做放错了,设放对了的情况有ξ种.

(1)求ξ的分布列;

(2)求ξ的期望和方差.

答案:
解析:

  解:(1)ξ=0,1,2,3,4.

  当ξ=0时,说明四个球全放错了,记符号(m,n)表示编号为m的小球放入了编号为n的盒子里,m,n=1,2,3,4,则m≠n的情况有:

  

  (此法供评卷参与,或3C

  共有9种情况,所以P(ξ=0)= 2分

  当ξ=1时,说明只有一个球放对了,另外三个球放错了,这种情况有C×2=8种,所以P(ξ=1)= 3分

  当ξ=2时,说明有2个球放对了,另两个球放错了,P(ξ=2)= 4分

  当ξ=3时,说明有3个球放对了,第四个球放错了,这种情况是不存在的. 5分

  当ξ=4是,说明4个球全放对了,P(ξ=4)= 6分

  所以,ξ的分布列为

  8分

  (2)Eξ=0×+1×+2×+3×0+4×=1; 10分

  Dξ=(0-1)2×+(1-1)2×+(2-1)2+(3-1)2×0+(4-1)2×

  ==1 12分


练习册系列答案
相关习题

同步练习册答案