(14分) 定义:若函数
对于其定义域内的某一数
,有
,则称
是
的一个不动点. 已知函数
.
(1)当
,
时,求函数
的不动点;
(2)若对任意的实数b,函数
恒有两个不动点,求a的取值范围;
(3)在(2)的条件下,若
图象上两个点A、B的横坐标是函数
的不动点,且A、B的中点C在函数
的图象上,求b的最小值.
(参考公式:
的中点坐标为
)
科目:高中数学 来源: 题型:
(本题满分14分)定义:对于函数
,
.若
对定义域内的
恒成立,则称函数
为
函数.(1)请举出一个定义域为
的
函数,并说明理由;(2)对于定义域为
的
函数
,求证:对于定义域内的任意正数
,均有![]()
;
(3)对于值域
的
函数
,求证:
.
查看答案和解析>>
科目:高中数学 来源:2011年新课标高三上学期单元测试(1)理科数学卷 题型:解答题
(本题14分)设定义在R上的函数
,对任意
有
, 且当
时,恒有
,若
.
(1)求
;
(2)求证:
时
为单调递增函数.
(3)解不等式
.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省宁波市高三高考理数模拟试题 题型:解答题
(本小题满分14分)
函数
定义在区间[a, b]上,设“
”表示函数
在集合D上的最小值,“
”表示函数
在集合D上的最大值.现设
,
,
若存在最小正整数k,使得
对任意的
成立,则称函数
为区间
上的“第k类压缩函数”.
![]()
(Ⅰ) 若函数
,求
的最大值,写出
的解析式;
(Ⅱ) 若
,函数
是
上的“第3类压缩函数”,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年广东省高三上学期期中考试文科数学卷 题型:解答题
(本小题满分14分)
设数列
的通项公式为
. 数列
定义如下:对于正整数m,
是使得不等式
成立的所有n中的最小值.
(Ⅰ)若
,求
;
(Ⅱ)若
,求数列
的前2m项和公式;
(Ⅲ)是否存在p和q,使得
?如果存在,求p和q的取值范围;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com