精英家教网 > 高中数学 > 题目详情
(Ⅰ)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当n =4时,求的数值;②求的所有可能值;

(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.

本小题主要考查等差数列、等比数列的有关知识,考查运用分类讨论的思想方法进行探索、分析及论证的能力.

解:(1)①当n=4时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0。

     若删去,则,即化简得,得

若删去,则,即化简得,得

综上,得

②当n=5时, 中同样不可能删去,否则出现连续三项。

若删去,则,即化简得,因为,所以不能删去;

n≥6时,不存在这样的等差数列。事实上,在数列中,由于不能删去首项或末项,若删去,则必有,这与矛盾;同样若删去也有,这与矛盾;若删去中任意一个,则必有,这与矛盾。(或者说:当n≥6时,无论删去哪一项,剩余的项中必有连续的三项)

综上所述,

(2)假设对于某个正整数n,存在一个公差为d的n项等差数列,其中)为任意三项成等比数列,则,即,化简得   (*)

知,同时为0或同时不为0

同时为0时,有与题设矛盾。

同时不为0,所以由(*)得

因为,且x、y、z为整数,所以上式右边为有理数,从而为有理数。

于是,对于任意的正整数,只要为无理数,相应的数列就是满足题意要求的数列。

例如n项数列1,,……,满足要求。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年江苏卷)(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

(1)①     当时,求的数值;②求的所有可能值;

(2)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。

查看答案和解析>>

科目:高中数学 来源: 题型:

是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列。

(1)当n=4时,求的数值;w.w.w.k.s.5.u.c.o.m    

(2)求n的所有可能值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当时,求的数值;②求的所有可能值;

(II)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。

查看答案和解析>>

科目:高中数学 来源:2010年广东省高二期末测试数学(理) 题型:选择题

是各项均不为零的等差数列,且公差.设是将此数列删去某一项得到的数列(按原来的顺序)为等比数列的最大的值,则

A               B           C                D  

 

 

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

(I)设是各项均不为零的等差数列,且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当时,求的数值;②求的所有可能值;

(II)求证:对于一个给定的正整数,存在一个各项及公差都不为零的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。

 

查看答案和解析>>

同步练习册答案