精英家教网 > 高中数学 > 题目详情
设定义域为r的函数f(x)=
|lgx|        x>0
-x2-2x      x≤0
,若关于x的函数y=2f2(x)+2bf(x)+1有8个不同的零点,则实数b的取值范围是(  )
A.-
3
2
<b
2
B.-
3
2
<b<-
2
C.-2<b<-
2
D.-
3
2
<b<-
2
或b
2
令t=f(x),则原函数等价为y=2t2+2bt+1.做出函数f(x)的图象如图:
精英家教网

图象可知当由0<t<1时,函数t=f(x)有四个交点.
所以要使关于x的函数y=2f2(x)+2bf(x)+1有8个不同的零点,则函数y=2t2+2bt+1有两个根t1,t2
且0<t1<1,0<t2<1.
令g(t)=2t2+2bt+1,则由根的分布可得
△>0
g(0)>0
g(1)>0
0<-
2b
2×2
<1
,即
△=4b2-8>0
g(0)=1>0
g(1)=2b+3>0
-2<b<0

解得
b>
2
或b<-
2
b>-
3
2
-2<b<0
,即-
3
2
<b<-
2
,所以实数b的取值范围是-
3
2
<b<-
2

精英家教网

故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
5|x-1|-1,x≥0
x2+4x+4,x<0
若关于x的方程f2(x)-(2m+1)f(x)+m2=0有5个不同的实数解,则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
-2x+a2x+1+b
(a,b为实数)若f(x)是奇函数.
(1)求a与b的值;
(2)判断函数f(x)的单调性,并证明;
(3)证明对任何实数x、c都有f(x)<c2-3c+3成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若关于x的方程f2(x)+bf(x)+c=0有三个不同的实数解x1、x2、x3,则x12+x22|x32等于(  )

查看答案和解析>>

同步练习册答案