试题分析:(Ⅰ)用k表示
,可由已知
,
,可得
,结合|k
+
|=
|
-k
|,像这种与向量的模有关,可采用两边平方法,这样两边平后可得
,整理后可用k表示
,(Ⅱ)求
·
的最小值,由(Ⅰ)中函数的解析式,利用基本不等式,即可求出
的最小值,利用最小值代入向量夹角公式,从而可得此时
与
的夹角
的大小.
试题解析:(1)已知|ka+b|=
|a-kb|,两边平方,得|ka+b|
2=(
|a-kb|)
2k
2a
2+b
2+2ka·b=3(a
2+k
2b
2-2ka·b)∴8k·a·b=(3-k
2)a
2+(3k
2-1)b
2a·b =
∵a=(cosα,sinα),b=(cosβ,sinβ),
∴a
2="1," b
2=1,∴a·b =
=
(2)∵k
2+1≥2k,即
≥
=
∴a·b的最小值为
,又∵a·b ="|" a|·|b |·cos
,|a|=|b|=1∴
=1×1×cos
。∴
=60°,此时a与b的夹角为60°。