精英家教网 > 高中数学 > 题目详情
设函数f(x)定义域为R且f(x)的值恒大于0,对于任意实数x,y,总有f(x+y)=f(x)•f(y),且当x<0时,f(x)>1.
(1)求证:f(0)=1,且f(x)在R上单调递减;
(2)设集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B≠∅,求a的取值范围.
分析:(1)令x=-1,y=0,即可证得f(0)=1;设x1,x2∈R,且x1<x2,作差f(x1)-f(x2),可判断其符号大于0,从而可证f(x)在R上单调递减;
(2)由f(x2)•f(y2)>f(1),得f(x2+y2)>f(1),利用f(x)在R上单调递减的性质可知x2+y2<1;由f(ax-y+2)=1=f(0)得:ax-y+2=0,由∩B≠∅,可知直线与圆相交,从而可求得a的取值范围.
解答:解:(1)证明:令x=-1,y=0,得f(-1)=f(-1)•f(0),
又当x<0时,f(x)>1,所以有f(0)=1 …(2分)
设x1,x2∈R,且x1<x2,则x1-x2<0,于是f(x1-x2)>1…3分
∴f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)…4分
=f(x1-x2)•f(x2)-f(x2
=f(x2)[f(x1-x2)-1]…5分
∵f(x)在R上恒大于0,
∴f(x2)>0,
∴f(x2)[f(x1-x2)-1]>0,
∴f(x1)>f(x2),即f(x)在R上单调递减;…6分
(2)由f(x2)•f(y2)>f(1),得f(x2+y2)>f(1),
∵f(x)在R上单调递减,
∴x2+y2<1,即A表示圆x2+y2=1的内部…8分
由f(ax-y+2)=1=f(0)得:ax-y+2=0,
∴B表示直线ax-y+2=0…10分
∵A∩B≠∅,
∴直线与圆相交,即
2
1+a2
<1解得:a>
3
或a<-
3
…13分
点评:本题考查抽象函数及其应用,考查函数单调性的判定,考查子集与交集、并集运算的转换,考查直线与圆的位置关系,考查运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]⊆D使f(x)在[a,b]上的值域为[a,b],那么就称y=f(x)为“成功函数”.若函数g(x)=loga(a2x+t)(a>0,a≠1)是定义域为R的“成功函数”,则t的取值范围为(  )
A、(0,+∞)
B、(-∞,0)
C、[0,
1
4
]
D、(0,
1
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义域为R,对一切x、y∈R,均满足:f(x+y)+f(x-y)=2f(x)cosy,且f(0)=3,f(
π2
)=4

(1)求f(π)的值;
(2)求证:f(x)为周期函数,并求出其一个周期;
(3)求函数f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,有f(x+y)=f(x)•f(y).
(1)证明:f(0)=1;          
(2)证明:f(x)在R上是增函数;
(3)设集合A={(x,y)|f(x2)•f(y2)<f(1)},B={(x,y)|f(x+y+c)=1,c∈R},若A∩B=φ,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义域为D,x1
x
 
2
∈D
,同时满足下列条件
f(x1
x
 
2
)=f(x1)+f(x2)

f(x2)-f(x1)
x2-x 1
>0

f(
x1+
x
 
2
2
)>
1
2
[f(x1)+f(x2)]
的函数是(  )

查看答案和解析>>

同步练习册答案