【题目】求下列函数的单调递减区间:
(1);
(2);
(3).
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线,圆,已知直线与圆相切,且与抛物线相交于两点.
(Ⅰ)求直线在轴上截距的取值范围;
(Ⅱ)设是抛物线的焦点,,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD中,边长为2,E为AB中点,F是边BC上的动点.
(1)将△ADE沿DE翻折90°到△SDE,求二面角S-DC-E的正切值;
(2)若,将△ADE沿DE翻折到△SDE,△BEF沿EF翻折到△SEF,接DF,设直线DS与平面DEF所成角为θ,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年5月14日至15日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为.
(1)求的值;
(2)估计甲品牌产品寿命小于200小时的概率;
(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究变量,得到一组样本数据,进行回归分析,有以下结论
①残差平方和越小的模型,拟合的效果越好;
②用相关指数来刻画回归效果,越小说明拟合效果越好;
③在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位
④若变量和之间的相关系数为,则变量和之间的负相关很强,以上正确说法的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)当时,求的单调增区间;
(2)令.
①当时,若函数恰有两个不同的零点,求的值;
②当时,若的解集为,且中有且仅有一个整数,求实数b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com