精英家教网 > 高中数学 > 题目详情
已知
a
=(1,sin2x),
b
=(2,sin2x),其中x∈(0,π),若|
a
b
|=|
a
|•|
b
|,则tanx的值等于
 
分析:根据|
a
b
|=|
a
||
b
||cosθ|=|
a
|•|
b
|可得|cosθ|=1,即
a
b
,进而求出sinx=cosx.从而得到答案.
解答:解:∵|
a
b
|=|
a
||
b
||cosθ|=|
a
|•|
b
|,∴|cosθ|=1   即
a
b

a
=(1,sin2x),
b
=(2,sin2x),
∴sin2x=2sin2x∴sinx=cosx
∴tanx=1
故答案为:1
点评:本题主要考查向量的数量积运算.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(1,sinθ),
b
=(1,cosθ),(θ∈R)
(1)若
a
+
b
=(2,0)
,求sin2θ+2sinθcosθ得值.
(2)若
a
-
b
=(0,
1
5
),求sinθ+cosθ得值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα,cosα),
b
=(-1,sinα,cosα)分别是直线l1、l2的方向向量,则直线l1、l2的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,sinα),
b
=(cosα,-1),且
a
b
,则锐角α的大小为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(1,sinα),
b
=(2,sin(α+2β)),
a
b

(1)若sinβ=
3
5
,β是钝角,求tanα的值;
(2)求证:tan(α+β)=3tanβ.

查看答案和解析>>

同步练习册答案