精英家教网 > 高中数学 > 题目详情
14.函数y=sin(2x+$\frac{π}{6}$)sin(2x+$\frac{2π}{3}$)的最小正周期为(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.D.π

分析 直接利用三角函数的积化和差公式化简,再由周期公式求得周期.

解答 解:y=sin(2x+$\frac{π}{6}$)sin(2x+$\frac{2π}{3}$)
=$-\frac{1}{2}[cos(2x+\frac{π}{6}+2x+\frac{2π}{3})-cos(2x+\frac{π}{6}-2x-\frac{2π}{3})]$
=$-\frac{1}{2}cos(4x+\frac{5π}{6})+\frac{1}{2}cos(-\frac{π}{2})$
=$-\frac{1}{2}cos(4x+\frac{5π}{6})$.
∴$T=\frac{2π}{4}=\frac{π}{2}$.
故选:A.

点评 本题考查三角函数的积化和差公式,考查了三角函数周期的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$═(cosθ,sinθ),向量$\overrightarrow{b}$=($\sqrt{3}$,-1)
(1)求|$\overrightarrow{a}$|;
(2)若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$是平行向量,求向量$\overrightarrow{a}$和θ:
(3)若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$方向相反,求tanθ+cotθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线y=-x+3与坐标轴围成的三角形的面积是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f1(x),f2(x)满足${∫}_{-a}^{a}$f1(x)•f2(x)dx=0(a>0),则称f1(x),f2(x)是区间[-a,a]上的一组Γ函数,给出下列四组函数:
①f1(x)=x2,f2(x)=x+1;
②f1(x)=cosx,f2(x)=tanx;
③f1(x)=2x-1,f2(x)=2x+1;
④f1(x)=sinx,f2(x)=cosx.
其中是区间[-$\frac{1}{2}$,$\frac{1}{2}$]上的Γ函数的组数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线x2=4y的集点为F,准线为l,P为抛物线上一点,过P作PA⊥l于点A,当∠AFO=30°(O为坐标原点)时,|PF|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α∈(π,$\frac{3π}{2}$),cosα=-$\frac{5}{13}$,则tan($\frac{3π}{2}$+α)=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知log23<log22a,则a的取值范围是a>$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(x-1)8展开式中第4项的二项式系数是(  )
A.70B.-70C.56D.-56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列判断中,正确的判断是(  )(填序号)
A.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则向量$\overrightarrow{a}$和$\overrightarrow{b}$是相反向量
B.已知非零向量$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$-$\overrightarrow{b}$必与$\overrightarrow{a}$是平行向量
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{b}$=λ$\overrightarrow{a}$(λ∈R)
D.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|

查看答案和解析>>

同步练习册答案