精英家教网 > 高中数学 > 题目详情
7.现有半径为R、圆心角(∠AOB)为90°的扇形材料,要裁剪出一个五边形工件OECDF,如图所示.其中E,F分别在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.记∠COD=2θ,五边形OECDF的面积为S.
(1)试求S关于θ的函数关系式;
(2)求S的最大值.

分析 (1)设M是CD中点,连OM,推出∠COM=∠DOM=$\frac{1}{2}∠COD=θ$,MD=Rsinθ,利用△CEO≌△DFO,转化求解∠DFO=$\frac{3π}{4}$,在△DFO中,利用正弦定理$\frac{DF}{sin∠DOF}=\frac{DO}{sin∠DFO}$,求解S=S△COD+SODF+SOCE=S△COD+2SODF的解析式即可.
(2)利用S的解析式,通过三角函数的最值求解即可.

解答 解:(1)设M是CD中点,连OM,由OC=OD,可知OM⊥CD,
∠COM=∠DOM=,$\frac{1}{2}∠COD=θ$,MD=Rsinθ,
又OE=OF,EC=FD,OC=OD,可得△CEO≌△DFO,
故∠EOC=∠DOF,可知$∠AOM=∠BOM=\frac{1}{2}∠AOB=\frac{π}{4}$,…(2分)
又DF⊥CD,OM⊥CD,所以MO∥DF,故∠DFO=$\frac{3π}{4}$,
在△DFO中,有$\frac{DF}{sin∠DOF}=\frac{DO}{sin∠DFO}$,
可得$DF=\frac{{Rsin(\frac{π}{4}-θ)}}{{sin\frac{3π}{4}}}=R(cosθ-sinθ)$…(5分)
所以S=S△COD+SODF+SOCE=S△COD+2SODF=$\frac{1}{2}{R^2}sin2θ+Rsinθ(Rcosθ-Rsinθ)$
=${R^2}sin2θ-{R^2}{sin^2}θ(0<θ<\frac{π}{4})$…(8分)
(2)$S={R^2}sin2θ-\frac{1}{2}{R^2}(1-cos2θ)={R^2}(sin2θ+\frac{1}{2}cos2θ)-\frac{1}{2}{R^2}$…(10分)
=$\frac{{\sqrt{5}}}{2}{R^2}sin(2θ+φ)-\frac{1}{2}{R^2}$(其中$φ=arctan\frac{1}{2}$)                  …(12分)
当$2θ+φ=\frac{π}{2}$,即$θ=\frac{π}{4}-\frac{φ}{2}$时,sin(2θ+φ)取最大值1.
又$\frac{π}{4}-\frac{φ}{2}$$∈(0,\frac{π}{4})$,所以S的最大值为$\frac{{\sqrt{5}-1}}{2}{R^2}$.                   …(14分)

点评 本题考查函数与方程的实际应用,三角函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点和短轴端点都在圆x2+y2=4上.
(1)求椭圆C的方程;
(2)已知点P(-3,2),若斜率为1的直线l与椭圆C相交于A,B两点,且△ABP是以AB为底边的等腰三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若f($\frac{1}{2}$)=0,△ABC的内角A满足f(cosA)<0,则A的取值范围是($\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩分成六段,然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四个小组的频率以及频率分布直方图中第四个小矩形的高;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=cos(ωx+φ)(ω>0),x=-$\frac{π}{8}$是y=f(x)的零点,直线x=$\frac{3π}{8}$为y=f(x)图象的一条对称轴,且函数f(x)在区间($\frac{π}{12}$,$\frac{5π}{24}$)上单调,则ω的最大值是(  )
A.9B.7C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.两个实习生每人加工一个零件,加工为一等品的概率分别为$\frac{2}{3}$和$\frac{1}{2}$,两个零件是否加工为一等品相互独立,则这两个零件中至少有一个加工为一等品的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一个盒子中装有2个红球,4个白球,除颜色外,它们的形状、大小、质量等完全相同
(1)采用不放回抽样,先后取两次,每次随机取一个球,求恰好取到1个红球,1个白球的概率;
(2)采用放回抽样,每次随机取一球,连续取5次,求恰有两次取到红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年12月1日,汉孝城际铁路正式通车运营.除始发站(汉口站)与终到站(孝感东站)外,目前沿途设有7个停靠站,其中,武汉市辖区内有4站(后湖站、金银潭站、天河机场站、天河街站),孝感市辖区内有3站(闵集站、毛陈站、槐荫站).为了了解该线路运营状况,交通管理部门计划从这7个车站中任选2站调研.
(1)求两个辖区各选1站的概率;
(2)求孝感市辖区内至少选中1个车站的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是以$\frac{1}{2}$为公差的等差数列,数列{bn}的前n项和为Sn,满足bn=2sin(πan+φ),φ∈(0,$\frac{π}{2}$),则Sn不可能是(  )
A.-1B.0C.2D.3

查看答案和解析>>

同步练习册答案