精英家教网 > 高中数学 > 题目详情
2.已知定义在R上的函数y=f(x)的导函数为f′(x),且满足f′(x)>f(x),则不等式f(2x-3)≥e2x-4f(1)的解集为{x|x≥2}.

分析 构造函数F(x)=$\frac{f(x)}{{e}^{x}}$,求导数结合题意可得F(x)=$\frac{f(x)}{{e}^{x}}$单调递增,原不等式等价于F(2x-3)≥F(1),即2x-3≥1,解之可得.

解答 解:由题意构造函数F(x)=$\frac{f(x)}{{e}^{x}}$,
∵f′(x)>f(x),∴f′(x)-f(x)>0,
∴F′(x)=$\frac{f′(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$>0
∴F(x)=$\frac{f(x)}{{e}^{x}}$单调递增,
又不等式f(2x-3)≥e2x-4f(1)等价于$\frac{f(2x-3)}{{e}^{2x-3}}$≥$\frac{f(1)}{e}$,
即F(2x-3)≥F(1),∴2x-3≥1
解得不等式的解集为{x|x≥2}
故答案为:{x|x≥2}

点评 本题考查导数的运算,涉及不等式的解法和函数的单调性,构造函数并求得单调性是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=3x,且f(a+2)=18,函数g(x)=3ax-4x(x∈R).
(1)求g(x)的解析式;
(2)若方程g(x)-b=0在[-2,2]上有两个不同的解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.高斯记号[x]表示不超过实数x的最大整数,如[-1.23]=-2,[1.23]=1,则方程[log2(lgx)]=0的解集为[10,100).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+2$\sqrt{3}$),则实数c的值是(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)中心的直线交椭圆于A,B两点,右焦点F2(c,O),则三角形ABF2面积的最大值为bc.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右焦点恰为圆C2:(x$-\sqrt{3}$)2+y2=7的圆心.
(1)求椭圆C1的方程;
(2)设直线l与曲线C1,C2都只有一个公共点,记直线l与圆C2的公共点为A,求A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.一条直线垂直于三角形的两条边,则该直线与三角形所在平面垂直
B.一条直线垂直于梯形的两条边,则该直线与梯形所在平面垂直
C.一条直线垂直于平面内无数多条直线,则该直线与平面垂直
D.两条平行线中一条垂直于一个平面,另一条不一定垂直于这个平面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列的前n项和的倒数为(  )
A.$\frac{n}{2(n+1)}$B.$\frac{1}{2n(n+1)}$C.$\frac{2}{n(n+1)}$D.$\frac{2n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$,判断f(x)的奇偶性.

查看答案和解析>>

同步练习册答案