精英家教网 > 高中数学 > 题目详情
3.函数y=lgx(  )
A.在区间(0,+∞)上是增函数B.在区间(-∞,+∞)上是增函数
C.在区间(0,+∞)上是减函数D.在区间(-∞,+∞)上是减函数

分析 根据题意由对数函数的定义和性质可得,函数y=lgx是对数函数,其定义域为(0,+∞),在其定义域上为增函数,据此依次分析选项可得答案.

解答 解:根据题意,函数y=lgx是对数函数,其定义域为(0,+∞),在其定义域上为增函数,
据此依次分析选项可得:
对于A、符合函数y=lgx的性质,正确;
对于B、不符合对数函数的定义域,错误;
对于C、不符合对数函数的单调性,错误;
对于D、不符合对数函数的定义域以及单调性,错误;
故选A.

点评 本题考查对数函数的性质,关键是掌握对数函数的图象与性质,属于简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)当x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]时,求函数f(x)的单调递增区间;
(3)若关于x的方程f(x)+log2k=0(k为实数)在x∈[$\frac{π}{3}$,$\frac{19π}{24}$]上恒有实数解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若logax=l,logay=m,logaz=n,则用l、m、n表示loga$\frac{{x}^{3}}{{y}^{2}{z}^{\frac{1}{3}}}$所得的结果是(  )
A.3l-2m+$\frac{1}{3}n$B.3l-2m-$\frac{1}{3}n$C.3l-2m+3nD.3l-2m-3n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的最大值,并画出图象:
(1)f(x)=-x2+6x-1;
(2)f(x)=2x2-4x,x∈[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=2loga(x-2)+3(a>0,a≠1)恒过定点的坐标为(3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x1满足2010x+2010x=2,x2满足2010x+2010log2010(x-1)=2,则x1+x2=(  )
A.1B.$\frac{2011}{2010}$C.$\frac{1006}{1005}$D.$\frac{2013}{2010}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C经过点(1,-1),且圆心为C(2,0).
(Ⅰ)求圆C的标准方程;
(Ⅱ)求直线l:4x+3y-13=0被圆C截得的弦长;
(Ⅲ)过点P(0,-$\sqrt{2}$)作圆C的两条切线,切点分别是A,B,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;
(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩分组[50,60﹚[60,70﹚[70,80﹚[80,90﹚[90,100﹚[100,110﹚[110,120]
频数       

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对
样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校在一次对是否喜欢英语学科的学生的抽样调查中,随机抽取了100名同学,相关的数据如表所示:
不喜欢英语喜欢英语总计
男生401858
女生152742
总计5545100
(Ⅰ)试运用独立性检验的思想方法分析:是否有99%的把握认为“学生是否喜欢英语与性别有关?”说明理由.
(Ⅱ)用分层抽样方法在喜欢英语学科的学生中随机抽取5名,女学生应该抽取几名?
(Ⅲ)在上述抽取的5名学生中任取2名,求恰有1名学生为男性的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.1000.0500.0250.010.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

同步练习册答案