(12分)已知函数
,曲线
在点
处的切线方程为
。
(1)求
,
的值;
(2)如果当
,且
时,
,求
的取值范围。
(Ⅰ)
,
。(Ⅱ)k的取值范围为(-
,0]
【解析】
试题分析:(1)由函数
,曲线
在点
处的切线方程为
,可知f’(1)=-
,f(1)=1,进而得到参数a,b的值。
(2)构造函数![]()
![]()
,对于参数k分类讨论得到参数的取值范围。
(Ⅰ)![]()
由于直线
的斜率为
,且过点
,故
即
解得
,
。
(Ⅱ)由(Ⅰ)知
,所以
。
考虑函数![]()
![]()
,则
。
(i)设
,由
知,当
时,
。而
,故
当
时,
,可得
;
当x
(1,+
)时,h(x)<0,可得
h(x)>0
从而当x>0,且x
1时,f(x)-(
+
)>0,即f(x)>
+
.
(ii)设0<k<1.由于当x
(1,
)时,(k-1)(x2 +1)+2x>0,故
(x)>0,而
h(1)=0,故当x
(1,
)时,h(x)>0,可得
h(x)<0,与题设矛盾。
(iii)设k
1.此时
(x)>0,而h(1)=0,故当x
(1,+
)时,h(x)>0,可得
h(x)<0,与题设矛盾。
综合得,k的取值范围为(-
,0]
考点:本试题主要考查了导数的几何意义的运用,以及寒素的最值的运用。
点评:解决该试题的关键是利用导数的几何意义得到参数a,b的值,得到解析式。
要证明不等式恒成立,要构造整体的函数,利用导数判定单调性得到参数k的范围。
科目:高中数学 来源:2014届浙江省嘉兴市高三上学期9月月考理科数学试卷(解析版) 题型:解答题
已知函数
,曲线
在点
处的切线是
:
(Ⅰ)求
,
的值;
(Ⅱ)若
在
上单调递增,求
的取值范围
查看答案和解析>>
科目:高中数学 来源:2014届浙江省嘉兴市高三上学期9月月考文科数学试卷(解析版) 题型:解答题
已知函数
,曲线
在点
处的切线是
:![]()
(Ⅰ)求
,
的值;
(Ⅱ)若
在
上单调递增,求
的取值范围
查看答案和解析>>
科目:高中数学 来源:2013届四川省成都市六校协作体高二下期期中联考数学试卷(解析版) 题型:解答题
已知函数
,曲线
在点
处的切线方程为
。
(Ⅰ)求
、
的值;
(Ⅱ)如果当
,且
时,
,求
的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com