已知函数f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2)求f(x)的单调区间.
(1)a=(2)当a≤0时f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).当0<a<时,f(x)的单调递增区间是(0,2)和,单调递减区间是.当a=时,f(x)的单调递增区间是(0,+∞).f(x)的单调递增区间是(0,+∞).f(x)的单调递增区间是和(2,+∞),单调递减区间是
【解析】f′(x)=ax-(2a+1)+ (x>0).
(1)由题意得f′(1)=f′(3),解得a=.
(2)f′(x)= (x>0).
①当a≤0时,x>0,ax-1<0.在区间(0,2)上,f′(x)>0;在区间(2,+∞)上,f′(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).
②当0<a<时, >2.在区间(0,2)和上,f′(x)>0;在区间上,f′(x)<0.
故f(x)的单调递增区间是(0,2)和,单调递减区间是.
③当a=时,f′(x)=≥0,
故f(x)的单调递增区间是(0,+∞).
④当a>时,0<<2,在区间和(2,+∞)上,f′(x)>0;在区间上,f′(x)<0.
故f(x)的单调递增区间是和(2,+∞),单调递减区间是
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用阶段检测1练习卷(解析版) 题型:填空题
对函数f(x)=xsin x,现有下列命题:①函数f(x)是偶函数;②函数f(x)的最小正周期是2π;③点(π,0)是函数f(x)的图象的一个对称中心;④函数f(x)在区间上单调递增,在区间上单调递减.其中是真命题的是________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用7练习卷(解析版) 题型:填空题
在△ABC中,内角A,B,C的对边长分别为a,b,c,已知a2-c2=2b,且sin Acos C=3cos Asin A,求b=______.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用5练习卷(解析版) 题型:解答题
已知函数f(x)=ex-ln(x+m).
(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;
(2)当m≤2时,证明f(x)>0.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用5练习卷(解析版) 题型:填空题
设P是函数y= (x+1)图象上异于原点的动点,且该图象在点P处的切线的倾斜角为θ,则θ的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用4练习卷(解析版) 题型:填空题
已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[-1,0]上的最小值为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用3练习卷(解析版) 题型:解答题
已知函数f(x)=.
(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;
(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用2练习卷(解析版) 题型:填空题
函数f(x)=x-sin x在区间[0,2π]上的零点个数为________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮复习专题提升训练江苏专用1练习卷(解析版) 题型:填空题
已知f(x)=ln(1+x)的定义域为集合M,g(x)=2x+1的值域为集合N,则M∩N=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com