精英家教网 > 高中数学 > 题目详情
3.抛物线x2=-$\frac{1}{2}$y的准线方程是(  )
A.x=$\frac{1}{2}$B.x=$\frac{1}{8}$C.y=$\frac{1}{2}$D.y=$\frac{1}{8}$

分析 直接利用抛物线的标准方程求解P,然后求出准线方程.

解答 解:抛物线x2=-$\frac{1}{2}$y,可得p=$\frac{1}{4}$,
抛物线x2=-$\frac{1}{2}$y的准线方程是:y=$\frac{1}{8}$.
故选:D.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.计算:$\sqrt{({lo{g}_{2}5)}^{2}-4lo{g}_{2}5+4}$+log2$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线l过定点(-1,2)且在两坐标轴上的截距相等,则直线l的方程为(  )
A.2x+y=0或x+y-1=0B.2x-y=0或x+y-1=0
C.2x+y=0或x-y+3=0D.x+y-1=0或x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题“?x∈R,x2-2x+4≥0”的否定为?x∈R,x2-2x+4<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点为F1、F2,过F2作垂直于x轴的直线交椭圆于P点(点P在x轴上方),连结PF1并延长交椭圆于另一点Q.设$\overrightarrow{P{F_1}}=λ\overrightarrow{{F_1}Q}$(2≤λ≤$\frac{7}{3}$).
(1)若PF1=$\frac{6}{5}\sqrt{5}$,PF2=$\frac{4}{5}\sqrt{5}$,求椭圆的方程;
(2)求椭圆的离心率的范围;
(3)当离心率最大时,过点P作直线l交椭圆于点R,设直线PQ的斜率为k1,直线RF1的斜率为k2,若k1=$\frac{3}{2}{k_2}$,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知Pn(xn,yn)(n=1,2,3,…)是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1右支上的一点,F1、F2为双曲线的左右焦点,且满足P1F2⊥F1F2,|Pn+1F2|=|PnF1|,则|P25F2|的值为$\frac{71}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.阅读算法流程图,运行相应的程序,输出的结果为$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线的顶点在坐标原点,焦点是圆(x-3)2+y2=4的圆心,则抛物线的方程是(  )
A.x2=12yB.x2=6yC.y2=12xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆心在原点,半径为4的圆的方程为x2+y2=16.

查看答案和解析>>

同步练习册答案