精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)试求f(0)的值;
(2)判断f(x)的单调性并证明你的结论;
(3)若对任意的t∈R,不等式f(t2-2t)-f(k-2t2)<0恒成立,求k的取值范围.
分析:(1)在f(m+n)=f(m)•f(n)中令m=1,n=0,即可求得f(0)的值;
(2)要判断f(x)的单调性,可任取x1,x2∈R,且设x1<x2,可证得f(x2)-f(x1)<0,从而可判断f(x)的单调性;
(3)由(2)知,f(t2-2t)-f(k-2t2)<0恒成立?k<3t2-2t(t∈R)?k<(3t2-2t)min,从而可求k的取值范围.
解答:解:(1)在f(m+n)=f(m)•f(n)中令m=1,n=0,得:f(1)=f(1)•f(0)
因为f(1)≠0,所以,f(0)=1.
(2)要判断f(x)的单调性,可任取x1,x2∈R,且设x1<x2
在f(m+n)=f(m)•f(n)中取m+n=x2,m=x1
则f(x2)=f(x1)•f(x2-x1),
∵x2-x1>0,
∴0<f(x2-x1)<1
为比较f(x2),f(x1)的大小,只需考虑fx1(  )的正负即可.
在在f(m+n)=f(m)•f(n)中令m=x,n=-x,则得f(x)-f(-x)=1.
∵x>0时0<f(x)<1,
∴当x<0时,f(x)=
1
f(-x)
>1>0.
又f(0)=1,所以,综上,可知,对于任意x1∈R,均有f(x1)>0.
∴f(x2)-f(x1)=f(x1)[f(x2-x1)-1]<0.
∴函数f(x)在R上单调递减.
(3)不等式即f(t2-2t)<f(k-2t2),
由(2)知函数f(x)在R上单调递减,
∴t2-2t>k-2t2
∴k<3t2-2t,其中t∈R.
∴k<(3t2-2t)min,而3t2-2t=3(t-
1
3
)
2
-
1
3
1
3

∴k<-
1
3
,即k的取值范围是(-∞,-
1
3
).
点评:本题考查抽象函数及其应用,考查赋值法,考查函数单调性的判定,考查转化思想与方程思想,考查逻辑推理与综合应用能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案