精英家教网 > 高中数学 > 题目详情
(2009•卢湾区二模)将参数方程
x=1+2cos2θ
y=
2
sinθ
(θ为参数,θ∈R)化为普通方程,所得方程是
y2=3-x(1≤x≤3)
y2=3-x(1≤x≤3)
分析:由于cos2θ+sin2θ=1,由已知条件求出sinθ 代入化简可得结果.
解答:解:由已知得,sin2θ=
y2
2
,cos2θ=
1-x
2
,且1≤x≤3由于cos2θ+sin2θ=1,代入化简得,y2=3-x,(1≤x≤3)
故答案为:y2=3-x,(1≤x≤3)
点评:本题考查把参数方程化为普通方程的方法,同角三角函数基本关系式的应用,利用cos2θ+sin2θ=1 是解题的关键.特别注意自变量的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•卢湾区二模)设数列{an}的前n项之和为Sn,若Sn=
1
12
(an+3)2
(n∈N*),则{an}(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)在平面直角坐标系中,若O为坐标原点,则A、B、C三点在同一直线上的充要条件为存在惟一的实数λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此时称实数λ为“向量
OC
关于
OA
OB
的终点共线分解系数”.若已知P1(3,1)、P2(-1,3),且向量
OP3
是直线l:x-y+10=0的法向量,则“向量
OP3
关于
OP1
OP2
的终点共线分解系数”为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)在△ABC中,设角A、B、C所对的边分别是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,则∠C=
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)二项式(x+
1
x
)6
的展开式中的常数项为
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)若函数f(x)=2sin2x-2
3
sinxsin(x-
π
2
)
能使得不等式|f(x)-m|<2在区间(0, 
3
)
上恒成立,则实数m的取值范围是
(1,2]
(1,2]

查看答案和解析>>

同步练习册答案