精英家教网 > 高中数学 > 题目详情
(理)如果实数x、y满足目标函数z=kx+y的最大值为12,最小值为3,那么实数k的值为

A.2                B.-2                     C.              D.不存在

答案:(理)A  如示意图,可行域为阴影部分.A(1,1)、B(5,2)、C(1,).

l1:x-4y+3=0的斜率k1=.l2:3x+5y-25=0的斜率k2=.

①当-k∈(0,)时,A为最小值点,C为最大值点,;

②当-k>时,B为最小值点,C为最大值点,;

③当<-k<0时,A为最小值点,C为最大值点,;

④当-k<时,A为最小值点,B为最大值点,.由④得k=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求数列{pn}的通项公式pn

查看答案和解析>>

科目:高中数学 来源:2008年上海市杨浦区高考数学二模试卷(理科)(解析版) 题型:解答题

(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程,如果椭圆C1经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若,求数列{pn}的通项公式pn

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如果实数x、y满足约束条件那么2y-x的最大值为

A.4             B.1                   C.0             D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年赤峰二中模拟理) 实数x, y满足, 如果z = kx + y的最大值为12, 最小值为3, 那么实数k的值为            

查看答案和解析>>

同步练习册答案