精英家教网 > 高中数学 > 题目详情

已知:在直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形.
求证:(1)平面B1AC∥平面DC1A1
(2)平面B1AC⊥平面B1BDD1

证明:(1)因为ABCD-A1B1C1D1是直四棱柱,
所以,A1C1∥AC,
而A1C1?平面B1AC,AC?平面B1AC,
所以A1C1∥平面B1AC.(3分)
同理,A1D∥平面B1AC.(5分)
因为A1C1、A1D?平面DC1A1,A1C1∩A1D=A1
所以平面B1AC∥平面DC1A1.(7分)
(2)因为ABCD-A1B1C1D1是直四棱柱,
所以B1B⊥平面ABCD,(9分)
而AC?平面ABCD,
所以AC⊥B1B.
因为底面ABCD是菱形,
所以AC⊥BD.
因为B1B、BD?平面B1BDD1,B1B∩BD=B,
所以AC⊥平面B1BDD1.(12分)
因为AC?平面B1AC,
故有平面B1AC⊥平面B1BDD1.(14分)
分析:(1)由已知中四棱柱ABCD-A1B1C1D1是直四棱柱,结合直四棱柱的性质,我们可得A1C1∥AC,由线面平行的判定定理可得A1C1∥平面B1AC,同理,A1D∥平面B1AC.(进而再由面面平行的判定定理,即可得到平面B1AC∥平面DC1A1
(2)由已知中四棱柱ABCD-A1B1C1D1是直四棱柱,结合直四棱柱的性质,我们可得B1B⊥平面ABCD,进而AC⊥B1B.又由已知中底面ABCD是菱形.则AC⊥BD,由线面垂直的判定定理我们可得AC平面B1BDD1.再由面面垂直的判定定理即可得到答案.
点评:本题考查的知识点是平面与平面平行的判定,平面与平面垂直的判定,其中熟练掌握空间中直线与平面平行或垂直的判定定理,熟练掌握直四棱柱的几何特征是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)设E是DC的中点,求证:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在直四棱柱ABCD-A1B1C1D1中,已知AB∥CD,AB=AD=1,D1D=CD=2,AB⊥AD.
(I)求证:BC⊥面D1DB;
(II)求D1B与平面D1DCC1所成角的大小;
(III)在BB1上是否存在一点F,使F到平面D1BC的距离为
3
3
,若存在,则指出该点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.
(1)若A1E=5,BF=10,求证:BE∥平面A1FD.
(2)若BD⊥A1F,求三棱锥A1AB1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱(侧棱与底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,给出以下结论:
(1)异面直线A1B1与CD1所成的角为45°;
(2)D1C⊥AC1
(3)在棱DC上存在一点E,使D1E∥平面A1BD,这个点为DC的中点;
(4)在棱AA1上不存在点F,使三棱锥F-BCD的体积为直四棱柱体积的
1
5

其中正确的个数有(  )

查看答案和解析>>

同步练习册答案