精英家教网 > 高中数学 > 题目详情

对于函数,若都是某一三角形的三边长,则称“可构造三角形函数”以下说法正确的是( )

A不是“可构造三角形函数”;

B.“可构造三角形函数”一定是单调函数;

C是“可构造三角形函数”;

D.若定义在上的函数的值域是为自然对数的底数),则一定是“可构造三角形函数”.

 

【答案】

D

【解析】

试题分析:本题考查了对新定义“可构造三角形函数”的判定,要结合函数值域,三角形知识进行判别.A选项:,则可构造三边边长为1的正三角形,∴A错.B选项:由“可构造三角形函数”定义可知,若为单调函数,不一定能满足三角形中“两边之和大于第三边,两边之差小于第三边”,∴B错.C 选项:,有若第三边,则不符合三角形函数.,则第三边无法取到大于1的值,∴C错误.D选项:若,则一定能满足三角形中“任意两边之和大于第三边”,,由定义可知一定是“可构造三角形函数”,∴选D

考点:1.新定义的创新问题;2.函数的值域.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:f′(x)是函数f(x)的导函数,f″(x)是f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心. 若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,请你根据这一发现,求:
(1)函数f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的对称中心为
 

(2)f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三边长,则称f(x)为“可构造三角形函数”.以下说法正确的是(  )
A、f(x)=1(x∈R)不是“可构造三角形函数”
B、“可构造三角形函数”一定是单调函数
C、f(x)=
1
x2+1
(x∈R)
是“可构造三角形函数”
D、若定义在R上的函数f(x)的值域是[
e
,e]
(e为自然对数的底数),则f(x)一定是“可构造三角形函数”

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南师大附中高考适应性月考(七)理科数学试卷(解析版) 题型:填空题

对于三次函数,给出定义:设是函数的导数,的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”应对对称中心.根据这一发现,则函数的对称中心为              

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三下学期数学综合练习(1) 题型:填空题

对于三次函数,给出定义:设是函数的导数,的导数,若方程有实数解,则称点为函数的“拐点”。某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。请你根据这一发现,求:函数对称中心为          

 

查看答案和解析>>

同步练习册答案