精英家教网 > 高中数学 > 题目详情
若过椭圆右焦点F2且倾斜角为的直线与椭圆相交所得的弦长等于,则b=   
【答案】分析:由题意知直线方程为y=-(x-),把y=-(x-)代入椭圆后,利用弦长公式可以求出b的值.
解答:解:由题意知
∴直线方程为y=-(x-),
把y=-(x-)代入椭圆并整理,得

设直线与椭圆交于A(x1,y1),B(x2,y2),

=
解得b2=3,∴
故答案:
点评:本题考查椭圆的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点与抛物线C:x2=4
3
y
的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率e=
1
2
且过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OM
ON
=-2
.若存在,求出直线l的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:
|AB|2
|MN|
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心为坐标原点O,焦点在x轴上,过椭圆右焦点F2且斜率为1的直线交椭圆于A、B两点,弦AB的中点为T,OT的斜率为

(1)求椭圆的离心率;

(2)设Q是椭圆上任意一点,F1为左焦点,求的取值范围;

(3)若M、N是椭圆上关于原点对称的两个点,点P是椭圆上任意一点,当直线PN斜率,试求直线PM的斜率的范围。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州中学高三(下)第二次统练数学试卷(文科)(解析版) 题型:解答题

设椭圆的一个顶点与抛物线的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率且过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得.若存在,求出直线l的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省金华市磐安中学高三(下)第二次统练数学试卷(文科)(解析版) 题型:解答题

设椭圆的一个顶点与抛物线的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率且过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得.若存在,求出直线l的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值.

查看答案和解析>>

同步练习册答案