【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α∈[0,π)).以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρcos2θ=4sinθ. (Ⅰ)设M(x,y)为曲线C上任意一点,求x+y的取值范围;
(Ⅱ)若直线l与曲线C交于两点A,B,求|AB|的最小值.
【答案】解:(Ⅰ)曲线C的极坐标方程为ρcos2θ=4sinθ, 可得ρ2sin2θ=4ρsinθ=0,可得直角坐标方程:x2=4y.
∴x+y=x+ x2= (x+2)2﹣1≥﹣1,
故x+y的取值范围为[﹣1,+∞)
(Ⅱ)直线l: (t为参数)消掉参数t,得到y﹣1=xtanα,
代入到x2=4y,x2﹣4xtanα﹣4=0,
∴x1+x2=4tanα,x1x2=﹣4
∴|AB|= |x1﹣x2|= 4 =4(1+tan2α)≥4.当且仅当α=0取等号,
故|AB|的最小值为4.
【解析】(Ⅰ)曲线C的极坐标方程为ρsin2θ=4sinθ=0,可得ρ2sin2θ=4ρsinθ,利用互化公式可得直角坐标方程,再根据二次函数的性质即可求出x+y的范围,(Ⅱ)由直线l的参数方程,消去参数t可得普通方程,直线方程与抛物线方程联立化为:x2﹣4xtanα﹣4=0,利用根与系数的关系及其弦长公式即可求出
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx(x>0)的图象与x轴相切于点(3,0). (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)+f(x)=﹣6x2+(3c+9)x,命题p:x1 , x2∈[﹣1,1],|g(x1)﹣g(x2)|>1为假命题,求实数c的取值范围;
(Ⅲ)若h(x)+f(x)=x3﹣7x2+9x+clnx(c是与x无关的负数),判断函数h(x)有几个不同的零点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列共有四个命题: ⑴命题“ ”的否定是“x∈R,x2+1<3x”;
⑵在回归分析中,相关指数R2为0.96的模型比R2为0.84的模型拟合效果好;
⑶a,b∈R, ,则p是q的充分不必要条件;
⑷已知幂函数f(x)=(m2﹣3m+3)xm为偶函数,则f(﹣2)=4.
其中正确的序号为 . (写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)
(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;
(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;
(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}中,已知a3=5,且a1 , a2 , a5为递增的等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的通项公式 (k∈N*),求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是( )
A.与平面A1DE垂直的直线必与直线BM垂直
B.异面直线BM与A1E所成角是定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)若a∈(﹣∞,﹣ ],且函数g(x)=xeax﹣1﹣2ax+f(x)的最小值为M,求M的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 与抛物线y2=2px(p>0)共焦点F2 , 抛物线上的点M到y轴的距离等于|MF2|﹣1,且椭圆与抛物线的交点Q满足|QF2|= . (Ⅰ)求抛物线的方程和椭圆的方程;
(Ⅱ)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A、B两点,求此切线在x轴上的截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0),离心率为 ,两焦点分别为F1、F2 , 过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.
(1)求椭圆C的方程;
(2)过点P(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,求弦长|AB|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com