分析 (1)利用递推关系可得$({a_{n+1}}-2{)^2}=a_n^2$,又an>2,即可证明.
(2)利用“裂项求和”即可得出.
解答 (1)证明:由$a_n^2+4n=4{S_n}+1$,①
可得$a_{n+1}^2+4(n+1)=4{S_{n+1}}+1$,②
②-①得$a_{n+1}^2-a_n^2+4=4{a_{n+1}}$,
即$({a_{n+1}}-2{)^2}=a_n^2$,
∵an>2,∴an+1-2=an,
即an+1-an=2,
∴{an}为等差数列.
(2)解:由已知得a12+4=4a1+1,
即$a_1^2-4{a_1}+3=0$,
解得a1=1(舍)或a1=3,
∴an=3+2(n-1)=2n+1,
∴bn=$\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})$+…+$(\frac{1}{2n+1}-\frac{1}{2n+3})]$
=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$
=$\frac{n}{3(2n+3)}$.
点评 本题考查了递推关系的应用、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}+{y^2}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | C. | $\frac{y^2}{4}+{x^2}=1$ | D. | $\frac{y^2}{4}+\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com