精英家教网 > 高中数学 > 题目详情
2.下列命题中正确的是(  )
A.过三点确定一个平面B.四边形是平面图形
C.三条直线两两相交则确定一个平面D.两个相交平面把空间分成四个区域

分析 根据平面的基本性质与推论,对题目中的命题进行分析,判断正误即可.

解答 解:对于A,过不在同一条直线上的三点有且只有一个平面,故A错误;
对于B,四边形也可能是空间四边形,不一定是平面图形,故B错误;
对于C,三条直线两两相交,可以确定一个平面或三个平面,故C错误;
对于D,平面是无限延展的,两个相交平面把空间分成四个区域,故D正确.
故选:D.

点评 本题考查了平面基本性质与推论的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.命题“?x0∈R,x02+2x0-3>0”的否定形式为?x∈R,x2+2x-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足不等式组$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$,则z=3|x|+y的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC的三边长分别是a,b,c,且a=1,B=45°,S△ABC=2,则△ABC的外接圆的面积为(  )
A.25πB.C.$\frac{25π}{2}$D.$\frac{5π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x,y满足约束条件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,则z=x-2y的取值范围为(  )
A.(-3,3)B.[-3,3]C.[-3,3)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.2016年10月3日,诺贝尔生理学或医学奖揭晓,获奖者是日本生物学家大隅良典,他的获奖理由是“发
现了细胞自噬机制”.在上世纪90年代初期,他筛选了上千种不同的酵母细胞,找到了15种和自噬有关
的基因,他的研究令全世界的科研人员豁然开朗,在此之前,每年与自噬相关的论文非常少,之后呈现
了爆发式增长,下图是1994年到2016年所有关于细胞自噬具有国际影响力的540篇论文分布如下:

(Ⅰ)从这540篇论文中随机抽取一篇来研究,那么抽到2016年发表论文的概率是多少?
(Ⅱ)如果每年发表该领域有国际影响力的论文超过50篇,我们称这一年是该领域的论文“丰年”.若从1994年到2016年中随机抽取连续的两年来研究,那么连续的两年中至少有一年是“丰年”的概率是多少?
(Ⅲ)由图判断,从哪年开始连续三年论文数量方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=ln(x+1)-\frac{ax}{x+1}(a∈R)$.
(Ⅰ)若f(0)为f(x)的极小值,求a的值;
(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x)的图象,若对于满足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{4}$,则f($\frac{π}{4}$)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正三棱锥V-ABC内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积的最小时,其底面边长为$6\sqrt{2}$.

查看答案和解析>>

同步练习册答案