精英家教网 > 高中数学 > 题目详情

已知为单调递增的等比数列,且是首项为2,公差为的等差数列,其前项和为.
(1)求数列的通项公式;
(2)当且仅当成立,求的取值范围.

(1);(2)的取值范围为

解析试题分析:(1)为单调递增的等比数列,说明,又根据
列出关于的方程组,解出,最后根据等比数列的性质,求出
(2)由题意是首项为2,公差为的等差数列,写出的表达式,代入,整理得,按照当且仅当,列出不等式组,求出的取值范围.
试题解析:(1)因为为等比数列,所以
所以
所以 为方程 的两根;
又因为为递增的等比数列,       所以 从而
所以 ;            
(2)由题意可知:
由已知可得:
所以 ,          
当且仅当,且时,上式成立,
,则
所以

所以 的取值范围为.
考点:等比数列的性质,等差数列的前n项和公式,整系数二次函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列的前项和为,已知
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·杭州模拟)已知数列{an}的前n项和Sn=-ann-1+2(n∈N*),数列{bn}满足bn=2nan
(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.
(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn
(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn
(1) 若当n=10时,Sn取到最小值,求的取值范围;
(2) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都为正数,
(1)若数列是首项为1,公差为的等差数列,求
(2)若,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列的各项均为正数,且成等差数列,成等比数列.
(1)求数列的通项公式;
(2)已知,记
,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,.令,数列的前项和为.
(1)求数列的通项公式和
(2)是否存在正整数),使得成等比数列?若存在,求出所有
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公比不为的等比数列的首项,前项和为,且成等差数列.
(1)求等比数列的通项公式;
(2)对,在之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②求证:.

查看答案和解析>>

同步练习册答案