精英家教网 > 高中数学 > 题目详情
(2012•浦东新区一模)△ABC的三个内角A、B、C所对的边分别为a、b、c,已知cosA=
4
5
,a=
6
5

(1)当B=
π
3
时,求b的值;
(2)设B=x(0<x
π
2
),求函数f(x)=b+4
3
cos2
x
2
的值域.
分析:(1)△ABC中,先求出sinA的值,再由正弦定理求得b的值.
(2)由正弦定理可得 b=2sinx,代入f(x)=b+4
3
cos2
x
2
化简为4sin(x+
π
3
)+2
3
,再由0<x<
π
2
,求出sin(x+
π
3
) 的范围,即可求得 函数f(x)的值域.
解答:解:(1)△ABC中,由于cosA=
4
5
,故sinA=
3
5
,…(2分)
b
sin
π
3
=
6
5
sinA
=2,b=
3
.…(6分)
(2)由正弦定理可得
b
sinx
=
6
5
sinA
=2,得 b=2sinx,…(7分)
∴f(x)=b+4
3
cos2
x
2
=2sinx+4
3
 cos2 
x
2
=2sinx+2
3
cosx+2
3
=4sin(x+
π
3
)+2
3
.…(11分)
∵0<x<
π
2
,∴x+
π
3
∈(
π
3
6
),sin(x+
π
3
)∈(
1
2
,1],…(12分)
∴函数f(x)的值域为 (2+2
3
,4+2
3
].…(14分)
点评:本题主要考查三角函数的恒等变换及化简求值,正弦定理以及正弦函数的定义域和值域的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浦东新区一模)函数y=
log2(x-2) 
的定义域为
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
①X∈M、∅∈M;
②对于X的任意子集A、B,当A∈M且B∈M时,有A∪B∈M;
③对于X的任意子集A、B,当A∈M且B∈M时,A∩B∈M;
则称M是集合X的一个“M-集合类”.
例如:M={∅,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图象,其中A(2,2),如图所示.在作曲线段AB时,该学生想把函数y=x
1
2
,x∈[0,2]
的图象作适当变换,得到该段函数的曲线.请写出曲线段AB在x∈[2,3]上对应的函数解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设复数z满足|z|=
10
,且(1+2i)z(i是虚数单位)在复平面上对应的点在直线y=x上,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知z=
1
1+i
,则
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步练习册答案