精英家教网 > 高中数学 > 题目详情
若集合A={x|x2-3x+2<0},B={x|2a≤x≤4a+1,a∈R},试求a的取值范围,使得A?B.
分析:利用一元二次不等式的解法化简集合A,再利用A?B.可得
2a≤1
4a+1≥2
,解出即可.
解答:解:由x2-3x+2<0,解得1<x<2,∴A={x|1<x<2}.
∵A?B,B={x|2a≤x≤4a+1,a∈R},
2a≤1
4a+1≥2
,解得
1
4
≤a≤
1
2

∴a的取值范围是[
1
4
1
2
]
点评:熟练掌握一元二次不等式的解法、集合间的关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x|x2≤9},B={x|x2-5x-6<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州一模)若集合A={x|x2-2x<0},B={x|y=lg(x-1)},则A∩B为
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2-|x|-6<0},B={x|
2x
≥1},求A∩CRB

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A∪B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案