精英家教网 > 高中数学 > 题目详情
若函数,则f(f(2))等于
[     ]
A.4
B.3
C.2
D.l
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若偶函数f(x)在在(-∞,-1]上是增函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列4个命题:
①若f(x)为减函数,则-f(x)为增函数;
②若f(x)为增函数,则函数g(x)=
1
f(x)
在其定义域内为减函数;
③若函数f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函数,则a的取值范围是1<m<2;
④函数f(x),g(x)在区间[-a,a](a>0)上都是奇函数,则f(x)•g(x)在区间[-a,a](a>0)是偶函数.
其中正确命题的序号是
①,④
①,④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区一模)定义在R上的函数y=f(x)既是奇函数又是周期函数,若函数y=f(x)的最小正周期是2,且当x∈(0,1)时,f(x)=log
1
2
(1-x),则f(x)在区间(1,2)上是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)=f(x0)+f(k)(k为常数),则称“f(x)关于k可线性分解”.
(1)函数f(x)=2x+x2是否关于1可线性分解?请说明理由;
(2)已知函数g(x)=lnx-ax+1(a>0)关于a可线性分解,求a的范围;
(3)在(2)的条件下,当a取最小整数时;
(i)求g(x)的单调区间;
(ii)证明不等式:(n!)2≤en(n-1)(n∈N*).

查看答案和解析>>

同步练习册答案