精英家教网 > 高中数学 > 题目详情
已知a是实数,函数f(x)=21nx+x2-ax(x∈(0,+∞)),
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与圆(x-1)2+y2=1相切,求a的值;
(Ⅱ)若函数f(x)在定义域上存在单调减区间,求a的取值范围;
(Ⅲ)若a=1,对x1∈[1,e],x0∈[1,e]使f(x0)=m-x1成立,求m的取值范围。
解:(Ⅰ)
又f(1)=1-a,切线方程:y-(1-a)=(4-a)(x-1),即(4-a)x-y-3=0,
又切线与圆(x-1)2+y2=1相切,得
(Ⅱ)若函数f(x)在定义域上存在单调减区间,(0,∞)使得f′(x)<0成立不等式有正数解,
又x>0,故2x2-ax+2<0有解,
①当a<0不可能;
②当a>0时,Δ=a2-4a>0,a>4;
(Ⅲ)若a=1,对使成立;
f(x)在[1,e]上的值域为[0,e2-e+2]且g(x)=
g(1)∈[0,e2-e+2],m-1∈[0,e2-e+2],即m≥1,

故m的取值范围为e2≤m≤e2-e+3。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=x2(x-a).
(Ⅰ)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[0,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=
43
ax3+x2-(a+5)x
,如果函数y=f(x)在区间[-1,1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a是实数,函数f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范围.
(2)若函数y=f(x)在区间[-1,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)已知a是实数,函数f(x)=x3-(a+
32
)x2
+2ax+1
(Ⅰ)若f′(2)=4,求a的值及曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求f(x)在区间[1,4]上的最大值.

查看答案和解析>>

同步练习册答案