精英家教网 > 高中数学 > 题目详情
已知在直角坐标系中(O为坐标原点),
OA
=(2,5),
OB
=(3,1),
OC
=(x,3)

(I)若A、B、C可构成三角形,求x的取值范围;
(II)当x=6时,直线OC上存在点M,且
MA
MB
,求点M的坐标.
分析:(1)若A、B、C可构成三角形,则
AB
BC
不共线,根据不共线向量坐标之间的关系求得x的取值范围.
(2)设
OM
=λ
OC
=(6λ,3λ),根据
MA
MB
=0
得到关于λ的式子,求得λ的值即可.
解答:解:(1)∵A、B、C可构成三角形,
∴A、B、C三点不共线,
AB
BC
不共线
AB
=(1,-4),
BC
=(x-3,2)
则有1×2+4×(x-3)≠0
即x的取值范围是x∈R且x≠
5
2

(2)∵
OM
OC
共线,故设
OM
=λ
OC
=(6λ,3λ),
又∵
MA
MB
,∴
MA
MB
=0

即45λ2-48λ+11=0,解得λ=
1
3
或λ=
11
15

OM
=(2,1)或
OM
=(
22
5
11
,5

∴点M的坐标为(2,1)或(
22
5
11
,5
点评:本题考查了向量的共线与垂直以及向量的坐标运算,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在直角坐标系中,直线l的参数方程为
x=2t+2
y=1+4t
(t为参数),圆C的参数方程为
x=1+
2
cosα
y=1+
2
sinα
(α为参数)
(1)试写出直线l的普通方程和圆C的普通方程
(2)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标系中,An(an,0),Bn(0,bn)(n∈N*),其中数列{an},{bn}都是递增数列.
(1)若an=2n+1,bn=3n+1,判断直线A1B1与A2B2是否平行;
(2)若数列{an},{bn}都是正项等差数列,设四边形AnBnBn+1An+1的面积为Sn(n∈N*),求证:{Sn}也是等差数列;
(3)若an=2nbn=an+b(a,b∈Z),b1≥-12,记直线AnBn的斜率为kn,数列{kn}的前8项依次递减,求满足条件的数列{bn}的个数.

查看答案和解析>>

科目:高中数学 来源:2011届黑龙江省哈三中高三第一次模拟考试数学理卷 题型:解答题

(本小题满分10分)
选修4-4:坐标系与参数方程
已知在直角坐标系中,圆锥曲线的参数方程为为参数),定点是圆锥曲线的左,右焦点.
(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程;
(Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建莆田一中高三上学期第一学段考试理科数学试卷(解析版) 题型:解答题

已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为

(Ⅰ)求曲线直角坐标方程;

(Ⅱ)若曲线交于A、B两点,定点,求的值.

 

查看答案和解析>>

同步练习册答案